Skip to main content
Log in

Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2013

Abstract

The colonization of three types of different plants, Zea mays, Arabidopsis thaliana, and Lemna minor, by GFP-labeled Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 was studied in gnotobiotic systems using confocal laser scanning microscopy and electron microscopy. It was demonstrated that FZB42 was able to colonize all the plants. On one hand, similar to some Gram-negative rhizobacteria like Pseudomonas, FZB42 favored the areas such as the concavities in root surfaces and the junctions where lateral roots occurred from the primary roots; on the other hand, we clearly demonstrated that root hairs were a popular habitat to the Gram-positive rhizobacterium. FZB42 exhibited a specific colonization pattern on each of the three types of plants. On Arabidopsis, tips of primary roots were favored by FZB42 but not so on maize. On Lemna, FZB42 accumulated preferably along the grooves between epidermal cells of roots and in the concave spaces on ventral sides of fronds. The results suggested L. minor to be a promising tool for investigations on plant-microbial interaction due to a series of advantages it has. Colonization of maize and Arabidopsis roots by FZB42 was also studied in the soil system. Comparatively, higher amount of FZB42 inoculum (∼108 CFU/ml) was required for detectable root colonization in the soil system, where the preference of FZB42 cells to root hairs were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, W.P. 2010. Wayne’s Word Lemnaceae On-Line. Retrieved Sept., 2007, from http://waynesword.palomar.edu/1wayindx.htm.

  • Bahme, J.B. and Schroth, M.N. 1987. Spatial-temporal colonization patterns of a rhizobacterium on underground organs of potato. Phytopathology 77, 1093–1100.

    Article  Google Scholar 

  • Bais, H.P., Fall, R., and Vivanco, J.M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg, G.V., Otoole, G.A., Lugtenberg, B.J.J., and Kolter, R. 1997. Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63, 4543–4551.

    PubMed  CAS  Google Scholar 

  • Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98, 11621–11626.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, B.G. and Helmann, J.D. 2006. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by Bacilli. Mol. Microbiol. 60, 765–782.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X.H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W.R., Reva, O., and et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X.H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., and Borriss, R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng, T.F.C., Bloemberg, G.V., Mulders, I.H.M., Dekkers, L.C., and Lugtenberg, B.J.J. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant. Microbe Interact. 13, 1340–1345.

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng, T.F.C., de Priester, W., van der Bij, A.J., and Lugtenberg, B.J.J. 1997. Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol. Plant Microb. Interact. 10, 79–86.

    Article  CAS  Google Scholar 

  • Choudhary, D.K. and Johri, B.N. 2009. Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493–513.

    Article  PubMed  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., and Barka, E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959.

    Article  PubMed  CAS  Google Scholar 

  • Conn, K.L., Lazarovits, G., and Nowak, J. 1997. A gnotobiotic bioassay for studying interactions between potatoes and plant growth-promoting rhizobacteria. Can. J. Microbiol. 43, 801–808.

    Article  CAS  Google Scholar 

  • Cross, J.W. 2002, Sep.15.2002. The Charms of Duckweed. Retrieved March, 2008, from http://www.mobot.org/jwcross/duckweed/duckweed.htm.

  • Davies, K. and Whitbread, R. 1989. Factors affecting the colonisation of a root system by fluorescent Pseudomonads: The effects of water, temperature and soil microflora. 116, 247–256.

    Google Scholar 

  • Fan, B., Chen, X.H., Budiharjo, A., Bleiss, W., Vater, J., and Borriss, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, R., Poinar, E.I., Bauer, P.H., Schroth, M.N., Hendson, M., Wang, X.L., and Hancock, J.G. 1994. Spatial colonization patterns and interaction of bacteria on inoculated sugar-beet seed. Phytopathology 84, 1338–1345.

    Article  Google Scholar 

  • Idris, E.E., Bochow, H., Ross, H., and Borriss, R. 2004. Use of Bacillus subtilis as biocontrol agent VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Disease Protection 111, 583–597.

    CAS  Google Scholar 

  • Idris, E.E., Iglesias, D.J., Talon, M., and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant. Microbe Interact. 20, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M.B. and Blaser, M.J. 2003. Detection of a luxS-signaling molecule in Bacillus anthracis. Infect. Immun. 71, 3914–3919.

    Article  PubMed  CAS  Google Scholar 

  • Kamilova, F., Validov, S., Azarova, T., Mulders, I., and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  • Kinsinger, R.F., Shirk, M.C., and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185, 5627–5631.

    Article  PubMed  CAS  Google Scholar 

  • Kloepper, J.W. and Schroth, M.N. 1981. Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71, 642–644.

    Article  Google Scholar 

  • Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribo somal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186, 1084–1096.

    Article  PubMed  CAS  Google Scholar 

  • Koumoutsi, A., Chen, X.H., Vater, J., and Borriss, R. 2007. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 73, 6953–6964.

    Article  PubMed  CAS  Google Scholar 

  • Lifshitz, R., Kloepper, J.W., Kozlowski, M., Simonson, C., Carlson, J., Tipping, E.M., and Zaleska, I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33, 390–395.

    Article  Google Scholar 

  • Liu, X., Zhao, H., and Chen, S. 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 52, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio, J., Campos-Cuevas, J.C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L.I., and Valencia-Cantero, E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant. Microbe Interact. 20, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B.J.J. and Dekkers, L.C. 1999. What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol. 1, 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B.J.J., Dekkers, L.C., and Bloemberg, G.V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B.J.J. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B.J.J., Kravchenko, L.V., and Simons, M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1, 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Lyle Lockhart, W., Billeck, B.N., and Baron, C.L. 1989. Bioassays with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate. Hydrobiologia 188–189, 353–359.

    Article  Google Scholar 

  • Meharg, A.A. and Killham, K. 1995. Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170, 345–349.

    Article  CAS  Google Scholar 

  • Ogata, H., Cao, Z., Losi, A., and Gartner, W. 2009. Crystallization and preliminary X-ray analysis of the LOV domain of the blue-light receptor YtvA from Bacillus amyloliquefaciens FZB42. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 853–855.

    Article  PubMed  Google Scholar 

  • Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125.

    Article  PubMed  CAS  Google Scholar 

  • Paulitz, T.C. and Belanger, R.R. 2001. Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103–133.

    Article  PubMed  CAS  Google Scholar 

  • Preston, G.M. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 907–918.

    Article  PubMed  CAS  Google Scholar 

  • Ramey, B.E., Koutsoudis, M., Bodman, S.B.v., and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7, 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Reva, O.N., Dixelius, C., Meijer, J., and Priest, F.G. 2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol. Ecol. 48, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Pare, P.W., and Kloepper, J.W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 4927–4932.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., Chen, X.H., Vater, J., Franke, P., Nicholson, G., Borriss, R., and Sussmuth, R.D. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70, 1417–1423.

    Article  PubMed  CAS  Google Scholar 

  • Timmusk, S., Grantcharova, N., and Wagner, E.G. 2005. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71, 7292–7300.

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel, M. and Halverson, L.J. 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol. Microbiol. 52, 735–750.

    Article  PubMed  Google Scholar 

  • Watnick, P.I. and Kolter, R. 1999. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 34, 586–595.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Fan.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12275-013-0723-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, B., Borriss, R., Bleiss, W. et al. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol. 50, 38–44 (2012). https://doi.org/10.1007/s12275-012-1439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-1439-4

Keywords

Navigation