Molecular characterization of chloranilic acid degradation in Pseudomonas putida TQ07

Abstract

Pentachlorophenol is the most toxic and recalcitrant chlorophenol because both aspects are directly proportional to the halogenation degree. Biological and abiotic pentachlorophenol degradation generates p-chloranil, which in neutral to lightly alkaline environmental conditions is hydrolyzed to chloranilic acid that present a violet-reddish coloration in aqueous solution. Several genes of the degradation pathway, cadR-cadCDX, as well as other uncharacterized genes (ORF5 and 6), were isolated from a chloranilic acid degrading bacterium, Pseudomonas putida strain TQ07. The disruption by random mutagenesis of the cadR and cadC genes in TQ07 resulted in a growth deficiency in the presence of chloranilic acid, indicating that these genes are essential for TQ07 growth with chloranilic acid as the sole carbon source. Complementation assays demonstrated that a transposon insertion in mutant CAD82 (cadC) had a polar effect on other genes contained in cosmid pLG3562. These results suggest that at least one of these genes, cadD and cadX, also takes part in chloranilic acid degradation. Based on molecular modeling and function prediction, we strongly suggest that CadC is a pyrone dicarboxylic acid hydrolase and CadD is an aldolase enzyme like dihydrodipicolinate synthase. The results of this study allowed us to propose a novel pathway that offers hypotheses on chloranilic acid degradation (an abiotic by-product of pentachlorophenol) by means of a very clear phenotype that is narrowly related to the capability of Pseudomonas putida strain TQ07 to degrade this benzoquinone.

This is a preview of subscription content, log in to check access.

References

  1. Ahlborg, U.G., T.M. Thunberg, and H.C. Spencer. 1980. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. Crit. Rev. Toxicol. 7, 1–35.

    PubMed  Article  CAS  Google Scholar 

  2. Altschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  3. Buchanan, C.L., H. Connaris, M.J. Danson, C.D. Reve, and D.W. Hough. 1999. An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorilated substrates. Biochem. J. 343, 563–570.

    PubMed  Article  CAS  Google Scholar 

  4. Chen, L. and J. Yang. 2008. Biochemical characterization of the tetrachlobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int. J. Mol. Sci. 9, 198–212.

    PubMed  Article  Google Scholar 

  5. Czaplicka, M. 2006. Photo-degradation of chlorophenols in the aqueous solution. J. Hazard Mater. 134, 45–59.

    PubMed  Article  CAS  Google Scholar 

  6. Dai, J., A.L. Sloat, M.W. Wright, and R.A. Manderville. 2005. Role of phenoxyl radicals in DNA adduction by chlorophenol xenobiotics following peroxidase activation. Chem. Res. Toxicol. 18, 771–779.

    PubMed  Article  CAS  Google Scholar 

  7. de Lorenzo, V., M. Herrero, V. Jakubzik, and K.N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

  8. Devenish, S.R., F.H. Huisman, E.J. Parker, A.T. Hadfield, and J.A. Gerrard. 2009. Cloning and characterisation of dihydrodipicolinate synthase from the pathogen Neisseria meningitidis. Biochim. Biophys. Acta 1794, 1168–1174.

    PubMed  CAS  Google Scholar 

  9. Figurski, D.H. and D.R. Helinki. 1979. Replication of an origin-containing derivate of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652.

    PubMed  Article  CAS  Google Scholar 

  10. Garrec, G.M.-L., I. Artaud, and C. Capeillère-Blandin. 2001. Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. Biochim. Biophy. Acta 1547, 288–301.

    Article  Google Scholar 

  11. Henikoff, S., G.W. Haughn, J.M. Calvo, and J.C. Wallace. 1998. A large family of bacterial activator proteins. Proc. Natl. Acad. Sci. USA 85, 6602–6606.

    Article  Google Scholar 

  12. Jensen, J. 1996. Chlorophenols in the terrestrial environment. Rev. Environ. Contam. 146, 25–51.

    Article  CAS  Google Scholar 

  13. Kersten, P.J., P.J. Chapman, and S. Dagley. 1985. Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J. Bacteriol. 162, 693–697.

    PubMed  CAS  Google Scholar 

  14. Lee, J.Y. and L. Xun. 1997. Purification and characterization of 2,6-dichloro-p-hydroquinone chlorohydrolase from Flavobacterium sp. strain ATCC 39723. J. Bacteriol. 179, 1521–4.

    PubMed  CAS  Google Scholar 

  15. Longoria, A., R. Tinoco, and R. Vázquez-Duhalt. 2009. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72, 485–490.

    Article  Google Scholar 

  16. Mars, A.E., J. Kingma, S.R. Kaschabek, W. Reineke, and D.B. Janssen 1999. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol. 181, 1309–1318.

    PubMed  CAS  Google Scholar 

  17. Masai, E.S., S. Shinohara, H. Hara, S. Nishikawa, Y. Katayama, and M. Fukuda. 1999. Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-clavage pathway of Sphingomonas paucimobilis SYK-6. J. Bacteriol. 181, 55–62.

    PubMed  CAS  Google Scholar 

  18. Mileski, G.J., J.A. Bumpus, M.A. Jurek, and S.D. Aust. 1988. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 2885–2889.

    PubMed  CAS  Google Scholar 

  19. Pisabarro, A., M. Malumbres, L.M. Mateos, J.A. Oguiza, and J.F. Martín. 1993. A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J. Bacteriol. 175, 2743–2749.

    PubMed  CAS  Google Scholar 

  20. Proudfoot, A.T. 2003. Pentachlorophenol poisoning. Toxicol. Rev. 22, 3–11.

    PubMed  Article  CAS  Google Scholar 

  21. Remberger, M., P.A. Hynning, and A.H. Neilson. 1991. 2,5-dichloro-3,6-dihydroxybenzo-1,4-quinone: identification of a new organochlorine compound in kraft bleachery effluents. Environ. Sci. Technol. 25, 1903–1907.

    Article  CAS  Google Scholar 

  22. Romine, M.F., L.C. Stillwell, K.-K. Wong, S.J. Thurston, E.C. Sisk, C. Sensen, T. Gaasterland, J.K. Fredrickson, and J.D. Saffer. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181, 1585–1602.

    PubMed  CAS  Google Scholar 

  23. Roy, A., A. Kucukural, and Y. Zhang. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738.

    PubMed  Article  CAS  Google Scholar 

  24. Ruckdeschel, G. and G. Renner. 1986. Effects of pentachlorophenol and some of its known and possible metabolites on fungi. Appl. Environ. Microbiol. 51, 1370–1372.

    PubMed  CAS  Google Scholar 

  25. Saeki, Y., M. Nozaki, and S. Senoh. 1980. Cleavage of pyrogallol by non-heme iron-containing dioxygenases. J. Biol. Chem. 255, 8465–8471.

    PubMed  CAS  Google Scholar 

  26. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press. New York, USA.

    Google Scholar 

  27. Sarr, D.H., C. Kazunga, M.J. Charles, J.G. Pavlovich, and M.D. Aitken. 1995. Decomposition of Tetrachloro-1,4-benzoquinone (p-chloranil) in Aqueous Solution. Environ. Sci. Technol. 29, 2735–2740.

    Article  CAS  Google Scholar 

  28. Schell, M.A. 1993. Molecular biology of the LysR family transcriptional regulators. Annu. Rev. Microbiol. 47, 597–626.

    PubMed  Article  CAS  Google Scholar 

  29. Soares da Costa, T.P., A.C. Muscroft-Taylor, R.C. Dobson, S.R. Devenish, G.B. Jameson, and J.A. Gerrard. 2010. How essential is the ‘essential’ active-site lysine in dihydrodipicolinate synthase? Biochimie. 92, 837–845.

    PubMed  Article  CAS  Google Scholar 

  30. Spaink, H.P., R.J.H. Okker, C.A. Wijffelman, E. Pees, and B.J. Lugtenberg. 1987. Promoters in the nodulation region of the Rhizobium leguminosarum sym plasmid pRL1JI. Plant Mol. Biol. 9, 27–39.

    Article  CAS  Google Scholar 

  31. Thorsted, P.B., D.P. Macartney, P. Akhtar, A.S. Haines, N. Ali, P. Davidson, T. Stafford, M.J. Pocklington, W. Pansegrau, B.M. Wilkins, and et al. 1998. Complete sequence of the IncPb plasmid R751: implications for evolution and organization of the IncP backbone. J. Mol. Biol. 282, 969–990.

    PubMed  Article  CAS  Google Scholar 

  32. Trevinõ-Quintanilla, L.G., L.J. Galán-Wong, B. Rodríguez-Uribe, and G. Soberón-Chávez. 2002. Cloning and characterization of a FAD-monooxygenase gene (cadA) involved in degradation of chloranilic acid (2,5-dichloro-3,6-dihydroxybenzo-1,4-quinone) in Pseudomonas putida TQ07. Appl. Microbiol. Biotechnol. 59, 545–550.

    PubMed  Article  Google Scholar 

  33. Wattiau, P., L. Bastiaens, R. van Herwijnen, L. Daal, J.R. Parsons, M.-E. Renard, D. Springael, and G.R. Cornelis. 2001. Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res. Miocrobiol. 152, 861–872.

    Article  CAS  Google Scholar 

  34. Yang, C.F., C.M. Lee, and C.C. Wang. 2006. Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62, 709–714.

    PubMed  Article  CAS  Google Scholar 

  35. Yrjälä, K., L. Paulina, and M. Romantschuk. 1997. Novel organization of chatechol meta-pathway genes in Sphingomonas sp. HV3 pSKY4 plasmid. FEMS Microbiol. Lett. 154, 403–408.

    PubMed  Article  Google Scholar 

  36. Zhao, F., K. Mayura, R.W. Hutchinson, R.P. Lewis, R.C. Burghard, and T.D. Phillips. 1995. Developmental toxicity and structure-activity relationship of chlorophenols using human embryonic palatal mesenchymal cells. Toxicol. Lett. 78, 35–42.

    PubMed  Article  CAS  Google Scholar 

  37. Zheng, W., H. Yu, X. Wang, and W. Qu. 2011. Systematic review of pentachlorophenol occurrence in the environment and in humans in China: Not a negligible health risk due to the re-emergence of schistosomiasis. Environ. Int. [Epub ahead of print] PMID: 21601283.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luis G. Treviño-Quintanilla.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Treviño-Quintanilla, L.G., Freyre-González, J.A., Guillén-Garcés, R.A. et al. Molecular characterization of chloranilic acid degradation in Pseudomonas putida TQ07. J Microbiol. 49, 974–980 (2011). https://doi.org/10.1007/s12275-011-1507-1

Download citation

Keywords

  • pentachlorophenol
  • chloranilic acid
  • biodegradation
  • Pseudomonas putida
  • pyrone dicarboxylic acid hydrolase
  • LysR regulator