Use of rpoB sequences and rep-PCR for phylogenetic study of Anoxybacillus species

Abstract

This study was conducted to investigate the applicability of rpoB, which encodes the β subunit of RNA polymerase, to be used as an alternative to 16S rRNA gene sequence similarity analysis in the thermophilic genus Anoxybacillus. Partial rpoB sequences were generated for the 14 type strains of Anoxybacillus species and 6 other strains of four Anoxybacillus species. The sequences and the phylogenetic tree of rpoB were compared with those obtained from 16S rRNA gene analysis. The rpoB gene was found to provide a better resolution for Anoxybacillus species, with lower interspecies sequence similarities. The rpoB sequence similarity analysis permitted a more accurate discrimination of the species within the Anoxybacillus genus than the more commonly used 16S rRNA gene. Furthermore, rapid and reproducible repetitive extragenic palindromic fingerprinting techniques (REP-, ERIC-, and BOX-PCR) were employed for the specimens of genus Anoxybacillus. Through comparison of the three methods, it was found that the BOX-PCR method generated more informative results than REP-PCR for the studied strains; BOX-PCR profiles were more distinct for the different strains, including a higher number of bands. Rapid and reproducible repetitive extragenic palindromic fingerprinting techniques (rep-PCR) constitute a suitable molecular approach for the validation and maintenance of taxonomy within the Anoxybacillus genus. The results of this study show that rpoB and rep-PCR provide rapid and reliable methods for molecular typing of Anoxybacillus species.

This is a preview of subscription content, access via your institution.

References

  1. Adiguzel, A., H. Ozkan, O. Baris, K. Inan, M. Gulluce, and F. Sahin. 2009. Identification and characterization of thermophilic bacteria isolated from hot springs in Turkey. J. Microbiol. Methods 79, 321–328.

    PubMed  Article  CAS  Google Scholar 

  2. Atanassova, M., A. Derekova, R. Mandeva, C. Sjoholm, and M. Kambourova. 2008. Anoybacillus bogrovensis sp. nov., a novel thermophilic bacterium isolated from a hot spring in Dolni Bogrov, Bulgaria. Int. J. Syst. Evol. Microbiol. 58, 2359–2362.

    PubMed  Article  CAS  Google Scholar 

  3. Barton, N.H., D.E.G. Briggs, J.A. Eisen, D.B. Goldstein, and N.H. Patel. 1997. Phylogenetic reconstruction, Online Chapter. In A. Gann (ed.), Evolution. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA.

    Google Scholar 

  4. Belduz, A.O., S. Dulger, and Z. Demirbag. 2003. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 53, 1315–1320.

    PubMed  Article  CAS  Google Scholar 

  5. Beffa, T., M. Blanc, P.F. Lyon, G. Vogt, M. Marchiani, J.L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot compost (60 to 80°C). Appl. Environ. Microbiol. 62, 1723–1727.

    PubMed  CAS  Google Scholar 

  6. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75, 4801–4805.

    PubMed  Article  CAS  Google Scholar 

  7. Dahllöf, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-Based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376–3380.

    PubMed  Article  Google Scholar 

  8. Da Mota, F.F., E.A. Gomes, E. Paiva, A.S. Rosado, and L. Seldin. 2004. Use of rpoB gene analysis for identification of nitrogenfixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett. Appl. Microbiol. 39, 34–40.

    PubMed  Article  Google Scholar 

  9. De Clerck, E., M. Rodriguez-Diaz, T. Vanhoutte, J. Heyrman, N.A. Logan, and P. De Vos. 2004. Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov. isolated from contaminated gelatin batches. Int. J. Syst. Evol. Microbiol. 54, 941–946.

    PubMed  Article  Google Scholar 

  10. Derekova, A., C. Sjoholm, R. Mandeva, and M. Kambourova. 2007. Anoxybacillus rupiensis sp. nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). Extremophiles 11, 577–583.

    PubMed  Article  Google Scholar 

  11. Drancourt, M. and D. Raoult. 2002. rpoB gene sequencebased identification of Staphylococcus species. J. Clin. Microbiol. 40, 1333–1338.

    PubMed  Article  CAS  Google Scholar 

  12. Dulger, S., Z. Demirbag, and A.O. Belduz. 2004. Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Int. J. Syst. Evol. Microbiol. 54, 1499–1503.

    PubMed  Article  CAS  Google Scholar 

  13. Gevers, D., G. Huys, and J. Swings. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31–36.

    PubMed  Article  CAS  Google Scholar 

  14. Guillaume-Gentil, O., P. Scheldeman, J. Marugg, L. Herman, H. Joosten, and M. Heyndrickx. 2002. Genetic heterogeneity in Bacillus sporothermodurans as demonstrated by ribotyping and repetitive extragenic palindromic PCR fingerprinting. Appl. Environ. Microbiol. 68, 4216–4224.

    PubMed  Article  CAS  Google Scholar 

  15. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  16. Kacagan, M., S. Canakci, C. Sandalli, K. Inan, D.N. Colak, and A.O. Belduz. 2008. Characterization of a xylanase from a thermophilic strain of Anoxybacillus pushchinoensis A8. Biologia 63, 599–606.

    Article  CAS  Google Scholar 

  17. Kevbrin, V.V., K. Zengler, A.M. Lysenko, and J. Wiegel. 2005. Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser vallay, Kamchatka. Extremophiles 9, 391–398.

    PubMed  Article  CAS  Google Scholar 

  18. Kim, B.J., C.J. Kim, J. Chun, Y.H. Koh, S.H. Lee, J.W. Hyun, C.Y. Cha, and Y.H. Kook. 2004. Phylogenetic analysis of he genera Streptomyces and Kitasatospora based on partial RNA polymerase β-subunit gene (rpoB) sequences. Int. J. Syst. Evol. Microbiol. 54, 593–598.

    PubMed  Article  CAS  Google Scholar 

  19. Kim, K.S., K.S. Ko, M.W. Chang, T.W. Hahn, S.K. Hong, and Y.H. Kook. 2003. Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol. Lett. 226, 299–305.

    PubMed  Article  CAS  Google Scholar 

  20. Kim, B.J., S.H. Lee, M.A. Lyu, S.J. Kim, G.H. Bal, S.J. Kim, G.T. Chae, E.U. Kim, C.Y. Cha, and Y.H. Kook. 1999. Identification of Mycobacterial species by comoarative sequence analysis of the RNA Polymerase gne (rpoB). J. Clin. Microbiol. 37, 1714–1720.

    PubMed  CAS  Google Scholar 

  21. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    PubMed  Article  CAS  Google Scholar 

  22. Ko, K.S., J.M. Kim, J.W. Kim, B.Y. Jung, W. Kim, I.J. Kim, and Y.H. Kook. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. J. Clin. Microbiol. 41, 2908–2914.

    PubMed  Article  CAS  Google Scholar 

  23. Korczak, B., H. Christensen, S. Emler, J. Frey, and P. Kuhnert. 2004. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int. J. Syst. Evol. Microbiol. 54, 1393–1399.

    PubMed  Article  CAS  Google Scholar 

  24. Korczak, B.M., R. Stieber, S. Emler, A.P. Burnens, J. Frey, and P. Kuhnert. 2006. Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int. J. Syst. Evol. Microbiol. 56, 937–945.

    PubMed  Article  CAS  Google Scholar 

  25. Ludwig, W. and H.P. Klenk. 2001. Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics, pp. 49–65. In D.R. Boone, R.W. Castenholz, and G.M. Garrity (eds.), Bergey’s Manual of Systematic Bacteriology. Springer, New York, NY, USA.

    Google Scholar 

  26. Meintanis, C., K.I. Chalkou, K.A. Kormas, D.S. Lymperopoulou, E.A. Katsifas, D.G. Hatzinikolaou, and D.G. Karagouni. 2008. Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett. Appl. Microbiol. 46, 395–401.

    PubMed  Article  CAS  Google Scholar 

  27. Mollet, C., M. Drancourt, and D. Raoult. 1997. rpoB sequence analysis as anovel basis for bacterial identification. Mol. Microbiol. 26, 1005–1011.

    PubMed  Article  CAS  Google Scholar 

  28. Mora, D., M.G. Fortina, G. Nicastro, C. Parini, and P.L. Manachini. 1998. Genotypic characterization of thermophilic bacilli: a study on new soil isolates and several reference strains. Res. Microbiol. 149, 711–722.

    PubMed  Article  CAS  Google Scholar 

  29. Peixoto, R.S., C.H.L. Da Coutinho, N.G. Rumjanek, A. Macrae, and A.S. Rosado. 2002. Use of rpoB and 16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE. Lett. Appl. Microbiol. 35, 316–320.

    PubMed  Article  CAS  Google Scholar 

  30. Pikuta, E., A. Lysenko, N. Chuvilskaya, U. Mendrock, H. Hippe, N. Suzina, D. Nikitin, G. Osipov, and K. Laurinavichius. 2000. Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int. J. Syst. Evol. Microbiol. 50, 2109–2117.

    PubMed  Article  CAS  Google Scholar 

  31. Poli, A., E. Esposito, L. Lama, P. Orlando, and G. Nicolaus. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst. Appl. Microbiol. 29, 300–307.

    PubMed  Article  CAS  Google Scholar 

  32. Poli, A., I. Romano, P. Cordella, P. Orlando, B. Nicolaus, and C.C. Berrini. 2009. Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Int. J. Syst. Evol. Microbiol. 13, 867–874.

    Google Scholar 

  33. Rademaker, J.L.W. and F.J. De Bruijn. 1997. Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis, pp. 1–26. In G. Caetano-Anolle’s and P.M. Gresshoff (eds.), DNA Markers: Protocols, Applications and Overviews. John Wiley and Sons, Inc, New York, NY, USA.

    Google Scholar 

  34. Rameshkumar, N. and S. Nair. 2009. Isolation and molecular characterization of genetically diverse antagonistic, diazotrophicred-pigmented vibrios from different mangrove rhizospheres. FEMS Microbiol. Ecol. 67, 455–467.

    PubMed  Article  CAS  Google Scholar 

  35. Saitou, N. and M. Nei. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  36. Saw, J.H., B.W. Mountain, L. Feng, M.V Omelchenko, S. Hou, J.A. Saito, M.B. Stott, and et al. 2008. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol. 9, R161.

    PubMed  Article  Google Scholar 

  37. Stackebrandt, E., W. Frederiksen, G.M. Garrity, P.A.D. Grimont, P. Kämpfer, M.C.J. Maiden, X. Nesme, and et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043–1047.

    PubMed  Article  CAS  Google Scholar 

  38. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    PubMed  Article  CAS  Google Scholar 

  39. Tessmann, D.J., R. Charudattan, H.C. Kistler, and E.N. Rosskopf. 2001. A molecular characterization of Cercospora species pathogenic to water hyacinth and emendation of C. piaropi. Mycologia 93, 323–334.

    Article  CAS  Google Scholar 

  40. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    PubMed  Article  CAS  Google Scholar 

  41. Versalovic, J., T. Koeuth, and J.R. Lupski. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19, 6823–6831.

    PubMed  Article  CAS  Google Scholar 

  42. Versalovic, J., M. Schneider, F.J. De Bruijn, and J.R. Zupski. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell. Biol. 5, 25–40.

    CAS  Google Scholar 

  43. Weng, F.Y., C.S. Chiou, P.H.P. Lin, and S.S. Yang. 2009. Application of recA and rpoB sequence analysis on phylogeny and molecular identification identification of Geobacillus species. J. Appl. Microbiol. 107, 452–464.

    PubMed  Article  CAS  Google Scholar 

  44. Yumoto, I., K. Hirota, T. Kawahara, Y. Nodasaka, H. Okuyama, H. Matsuyama, Y. Yokota, K. Nakajima, and T. Hoshino. 2004. Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka. Int. J. Syst. Evol. Microbiol. 54, 1239–1242.

    PubMed  Article  CAS  Google Scholar 

  45. Zhang, C.M., X.W. Huang, W.Z. Pan, J. Zhang, K.B. Wei, H.P. Klenk, S.K. Tang, W.J. Li, and K. Zhang. 2011. Anoxybacillus tengchongensis sp. nov. and Anoybacillus eryuanensis sp. nov., two novel facultatively anaerobic, alkalitolerant bacteria from hot springs in Yunnan, China. Int. J. Syst. Evol. Microbiol. 61, 118–122.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Osman Belduz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inan, K., Bektas, Y., Canakci, S. et al. Use of rpoB sequences and rep-PCR for phylogenetic study of Anoxybacillus species. J Microbiol. 49, 782–790 (2011). https://doi.org/10.1007/s12275-011-1136-8

Download citation

Keywords

  • Anoxybacillus
  • 16S rRNA
  • rpoB
  • REP-PCR
  • BOX-PCR
  • ERIC-PCR