The Journal of Microbiology

, Volume 49, Issue 6, pp 1039–1043 | Cite as

Mitochondrial phylogeny reveals intraspecific variation in Peronospora effusa, the spinach downy mildew pathogen

  • Young-Joon Choi
  • Marco Thines
  • Jae-Gu Han
  • Hyeon-Dong Shin
Note

Abstract

Since about two hundred years, downy mildew caused by Peronospora effusa is probably the most economically important disease of spinach (Spinacia oleracea). However, there is no information on the global phylogeographic structure of the pathogen and thus it is unclear whether a single genotype occurs worldwide or whether some local genetic variation exists. To investigate the genetic variability of this pathogen, a sequence analysis of two partial mitochondrial DNA genes, cox2 and nad1, was carried out. Thirty-three specimens of Peronospora effusa from four continents were analyzed, including samples from Australia, China, Japan, Korea, Mexico, Russia, Sweden, and the USA. Despite the potential anthropogenic admixture of genotypes, a phylogeographic pattern was observed, which corresponds to two major groups, an Asian/Oceanian clade and another group, which includes American/European specimens. Notably, two of six Japanese specimens investigated did not belong to the Asian/Oceanian clade, but were identical to three of the specimens from the USA, suggestive of a recent introduction from the USA to Japan. As similar introduction events may be occurring as a result of the globalised trade with plant and seed material, a better knowledge of the phylogeographic distribution of pathogens is highly warranted for food security purposes.

Keywords

obligate parasites Oomycetes phylogeographic distribution plant pathogen quarantine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi, A. Jr. and M.J. Goode. 1978. Fusarium oxysporum f. sp. spinaciae seedborne in spinach. Plant Dis. Rep. 62, 203–205.Google Scholar
  2. Brandenberger, L.P., J.C. Correll, and T.E. Morelock. 1991. Nomenclature of the downy mildew fungus on spinach. Mycotaxon 41, 157–160.Google Scholar
  3. Brasier, C.M., D.E.L. Cooke, and J.M. Duncan. 1999. Origin of a new Phytophthora pathogen through interspecific hybridisation. Proc. Natl. Acad. Sci. USA 96, 5878–5883.PubMedCrossRefGoogle Scholar
  4. Byford, W.J. 1981. Downy mildews of beet and spinach, p. 531–543. In D.M. Spencer (ed.), The Downy Mildews. Academic Press, London, UK.Google Scholar
  5. Choi, Y.J., S.B. Hong, and H.D. Shin. 2007a. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol. Res. 110, 381–391.CrossRefGoogle Scholar
  6. Choi, Y.J., S.B. Hong, and H.D. Shin. 2007b. Extreme size and sequence variation in the ITS rDNA of Bremia lactucae. Mycopathologia 163, 91–95.PubMedCrossRefGoogle Scholar
  7. Choi, Y.J., L. Kiss, L. Vajna, and H.D. Shin. 2009a. Characterization of a Plasmopara species on Ambrosia artemisiifolia, and notes on P. halstedii, based on morphology and multiple gene phylogenies. Mycol. Res. 113, 1127–1136.PubMedCrossRefGoogle Scholar
  8. Choi, Y.J., H.D. Shin, and M. Thines. 2009b. Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol. Res. 113, 1343–1353.Google Scholar
  9. Correll, J.C., T.E. Morelock, M.C. Black, S.T. Koike, L.P. Brandenberger, and F.J. Dainello. 1994. Economically important diseases of spinach. Plant Dis. 78, 653–660.CrossRefGoogle Scholar
  10. Farr, D.F. and A.Y. Rossman. 2009. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved 8 Feb 2011, from http://nt.ars-grin.gov/fungaldatabases/.
  11. Göker, M., H. Voglmayr, A. Riethmüller, and F. Oberwinkler. 2007. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet. Biol. 44, 105–122.PubMedCrossRefGoogle Scholar
  12. Greville, R.K. 1824. Flora Edinensis. Blackwood & Strand, Edinburgh, London, UK.Google Scholar
  13. Hudspeth, D.S.S., S.A. Nadler, and M.E.S. Hudspeth. 2000. A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia 92, 674–684.CrossRefGoogle Scholar
  14. Inaba, T. and T. Morinaka. 1984. Heterothallism in Peronospora effusa. Phytopathology 74, 214–216.CrossRefGoogle Scholar
  15. Kroon, L.P.N.M., F.T. Bakker, G.B.M. van den Bosch, P.J.M. Bonants, and W.G. Fliera. 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 41, 766–782.PubMedCrossRefGoogle Scholar
  16. Larsson, M. and B. Gerhardson. 1992. Disease progression and yield losses from root diseases caused by soil-borne pathogens of spinach. Phytopathology 82, 403–406.CrossRefGoogle Scholar
  17. Lee, S.B. and J.W. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores, p. 282–287. In M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, USA.Google Scholar
  18. Naiki, T. and M. Kanoh. 1977. On Fusarium wilt of spinach and its causal fungus. Ann. Phytopathol. Soc. Jpn. 43, 297–300.CrossRefGoogle Scholar
  19. O’Donnell, K., H.C. Kistler, B.K. Tacke, and H.H. Casper. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97, 7905–7910.PubMedCrossRefGoogle Scholar
  20. Raabe, R.D. and G.S. Pound. 1952. Relation of certain environmental factors to initiation and development of the white rust disease of spinach. Phytopathology 42, 448–452.Google Scholar
  21. Satou, M., K. Nishi, M. Kubota, M. Fukami, H. Tsuji, and K. van Ettekoven. 2006. Appearance of race Pfs:5 of spinach downy mildew fungus, Peronospora farinosa f. sp. spinaciae, in Japan. J. Gen. Plant Pathol. 72, 193–194.CrossRefGoogle Scholar
  22. Satou, M., T. Sugiura, R. Ohsaki, N. Honda, S. Horiuchi, and N. Yamauchi. 2002. A new race of spinach downy mildew in Japan. J. Gen. Plant Pathol. 68, 49–51.CrossRefGoogle Scholar
  23. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.PubMedCrossRefGoogle Scholar
  24. Telle, S. and M. Thines. 2008. Amplification of cox2 (∼620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3, e3584.PubMedCrossRefGoogle Scholar
  25. Thiers, B. 2011. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at http://sweetgum.nybg.org/ih/ [verified 8 Feb 2011].
  26. Thines, M. 2007. Characterisation and phylogeny of repetitive elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae). Fungal Genet. Biol. 44, 199–207.PubMedCrossRefGoogle Scholar
  27. Thines, M. 2009. Bridging the gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS ONE 4, e4790.PubMedCrossRefGoogle Scholar
  28. Thines, M., H. Komjáti, and O. Spring. 2005. Exceptional length of ITS in Plasmopara halstedii is due to multiple repetitions in the ITS-2 region. Eur. J. Plant Pathol. 112, 395–398.CrossRefGoogle Scholar
  29. Thines, M., S. Telle, S. Ploch, and F. Runge. 2009. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol. Res. 113, 532–540.PubMedCrossRefGoogle Scholar
  30. Voglmayr, H. 2008. Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. Eur. J. Plant Pathol. 122, 3–18.CrossRefGoogle Scholar
  31. Wiant, J.S., S.S. Ivanoff, and J.A. Stevenson. 1939. White rust of spinach. Phytopathology 29, 616–623.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Young-Joon Choi
    • 1
  • Marco Thines
    • 2
    • 3
  • Jae-Gu Han
    • 4
  • Hyeon-Dong Shin
    • 4
  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Biological Sciences, Institute of Ecology, Evolution and DiversityJohann Wolfgang Goethe UniversityFrankfurt (Main)Germany
  3. 3.Biodiversity and Climate Research Centre (BiK-F)Frankfurt (Main)Germany
  4. 4.Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations