Mitochondrial phylogeny reveals intraspecific variation in Peronospora effusa, the spinach downy mildew pathogen
- 184 Downloads
- 6 Citations
Abstract
Since about two hundred years, downy mildew caused by Peronospora effusa is probably the most economically important disease of spinach (Spinacia oleracea). However, there is no information on the global phylogeographic structure of the pathogen and thus it is unclear whether a single genotype occurs worldwide or whether some local genetic variation exists. To investigate the genetic variability of this pathogen, a sequence analysis of two partial mitochondrial DNA genes, cox2 and nad1, was carried out. Thirty-three specimens of Peronospora effusa from four continents were analyzed, including samples from Australia, China, Japan, Korea, Mexico, Russia, Sweden, and the USA. Despite the potential anthropogenic admixture of genotypes, a phylogeographic pattern was observed, which corresponds to two major groups, an Asian/Oceanian clade and another group, which includes American/European specimens. Notably, two of six Japanese specimens investigated did not belong to the Asian/Oceanian clade, but were identical to three of the specimens from the USA, suggestive of a recent introduction from the USA to Japan. As similar introduction events may be occurring as a result of the globalised trade with plant and seed material, a better knowledge of the phylogeographic distribution of pathogens is highly warranted for food security purposes.
Keywords
obligate parasites Oomycetes phylogeographic distribution plant pathogen quarantinePreview
Unable to display preview. Download preview PDF.
References
- Bassi, A. Jr. and M.J. Goode. 1978. Fusarium oxysporum f. sp. spinaciae seedborne in spinach. Plant Dis. Rep. 62, 203–205.Google Scholar
- Brandenberger, L.P., J.C. Correll, and T.E. Morelock. 1991. Nomenclature of the downy mildew fungus on spinach. Mycotaxon 41, 157–160.Google Scholar
- Brasier, C.M., D.E.L. Cooke, and J.M. Duncan. 1999. Origin of a new Phytophthora pathogen through interspecific hybridisation. Proc. Natl. Acad. Sci. USA 96, 5878–5883.PubMedCrossRefGoogle Scholar
- Byford, W.J. 1981. Downy mildews of beet and spinach, p. 531–543. In D.M. Spencer (ed.), The Downy Mildews. Academic Press, London, UK.Google Scholar
- Choi, Y.J., S.B. Hong, and H.D. Shin. 2007a. Re-consideration of Peronospora farinosa infecting Spinacia oleracea as distinct species, Peronospora effusa. Mycol. Res. 110, 381–391.CrossRefGoogle Scholar
- Choi, Y.J., S.B. Hong, and H.D. Shin. 2007b. Extreme size and sequence variation in the ITS rDNA of Bremia lactucae. Mycopathologia 163, 91–95.PubMedCrossRefGoogle Scholar
- Choi, Y.J., L. Kiss, L. Vajna, and H.D. Shin. 2009a. Characterization of a Plasmopara species on Ambrosia artemisiifolia, and notes on P. halstedii, based on morphology and multiple gene phylogenies. Mycol. Res. 113, 1127–1136.PubMedCrossRefGoogle Scholar
- Choi, Y.J., H.D. Shin, and M. Thines. 2009b. Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol. Res. 113, 1343–1353.Google Scholar
- Correll, J.C., T.E. Morelock, M.C. Black, S.T. Koike, L.P. Brandenberger, and F.J. Dainello. 1994. Economically important diseases of spinach. Plant Dis. 78, 653–660.CrossRefGoogle Scholar
- Farr, D.F. and A.Y. Rossman. 2009. Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved 8 Feb 2011, from http://nt.ars-grin.gov/fungaldatabases/.
- Göker, M., H. Voglmayr, A. Riethmüller, and F. Oberwinkler. 2007. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews. Fungal Genet. Biol. 44, 105–122.PubMedCrossRefGoogle Scholar
- Greville, R.K. 1824. Flora Edinensis. Blackwood & Strand, Edinburgh, London, UK.Google Scholar
- Hudspeth, D.S.S., S.A. Nadler, and M.E.S. Hudspeth. 2000. A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia 92, 674–684.CrossRefGoogle Scholar
- Inaba, T. and T. Morinaka. 1984. Heterothallism in Peronospora effusa. Phytopathology 74, 214–216.CrossRefGoogle Scholar
- Kroon, L.P.N.M., F.T. Bakker, G.B.M. van den Bosch, P.J.M. Bonants, and W.G. Fliera. 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 41, 766–782.PubMedCrossRefGoogle Scholar
- Larsson, M. and B. Gerhardson. 1992. Disease progression and yield losses from root diseases caused by soil-borne pathogens of spinach. Phytopathology 82, 403–406.CrossRefGoogle Scholar
- Lee, S.B. and J.W. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores, p. 282–287. In M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, USA.Google Scholar
- Naiki, T. and M. Kanoh. 1977. On Fusarium wilt of spinach and its causal fungus. Ann. Phytopathol. Soc. Jpn. 43, 297–300.CrossRefGoogle Scholar
- O’Donnell, K., H.C. Kistler, B.K. Tacke, and H.H. Casper. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. USA 97, 7905–7910.PubMedCrossRefGoogle Scholar
- Raabe, R.D. and G.S. Pound. 1952. Relation of certain environmental factors to initiation and development of the white rust disease of spinach. Phytopathology 42, 448–452.Google Scholar
- Satou, M., K. Nishi, M. Kubota, M. Fukami, H. Tsuji, and K. van Ettekoven. 2006. Appearance of race Pfs:5 of spinach downy mildew fungus, Peronospora farinosa f. sp. spinaciae, in Japan. J. Gen. Plant Pathol. 72, 193–194.CrossRefGoogle Scholar
- Satou, M., T. Sugiura, R. Ohsaki, N. Honda, S. Horiuchi, and N. Yamauchi. 2002. A new race of spinach downy mildew in Japan. J. Gen. Plant Pathol. 68, 49–51.CrossRefGoogle Scholar
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.PubMedCrossRefGoogle Scholar
- Telle, S. and M. Thines. 2008. Amplification of cox2 (∼620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3, e3584.PubMedCrossRefGoogle Scholar
- Thiers, B. 2011. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at http://sweetgum.nybg.org/ih/ [verified 8 Feb 2011].
- Thines, M. 2007. Characterisation and phylogeny of repetitive elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae). Fungal Genet. Biol. 44, 199–207.PubMedCrossRefGoogle Scholar
- Thines, M. 2009. Bridging the gulf: Phytophthora and downy mildews are connected by rare grass parasites. PLoS ONE 4, e4790.PubMedCrossRefGoogle Scholar
- Thines, M., H. Komjáti, and O. Spring. 2005. Exceptional length of ITS in Plasmopara halstedii is due to multiple repetitions in the ITS-2 region. Eur. J. Plant Pathol. 112, 395–398.CrossRefGoogle Scholar
- Thines, M., S. Telle, S. Ploch, and F. Runge. 2009. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycol. Res. 113, 532–540.PubMedCrossRefGoogle Scholar
- Voglmayr, H. 2008. Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. Eur. J. Plant Pathol. 122, 3–18.CrossRefGoogle Scholar
- Wiant, J.S., S.S. Ivanoff, and J.A. Stevenson. 1939. White rust of spinach. Phytopathology 29, 616–623.Google Scholar