Skip to main content
Log in

Immunostimulatory Activity of Dendritic cells pulsed with carbonic anhydrase IX and Acinetobacter baumannii outer membrane protein A

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, S., J.C. Oosterwijk-Wakka, N. Adrian, E. Oosterwijk, E. Fischer, T. Wüest, F. Stenner, and et al. 2009. Targeted therapy of renal cell carcinoma: synergistic activity of cG250-TNF and IFNg. Int. J. Cancer 125, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Bleumer, I., D.M. Tiemessen, J.C. Oosterwijk-Wakka, M.C. Völler, K. De Weijer, P.F. Mulders, and E. Oosterwijk. 2007. Preliminary analysis of patients with progressive renal cell carcinoma vaccinated with CA9-peptide-pulsed mature dendritic cells. J. Immunother. 30, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Bukowski, R.M. 2000. Cytokine combinations: therapeutic use in patients with advanced renal cell carcinoma. Semin. Oncol. 27, 204–212.

    PubMed  CAS  Google Scholar 

  • Chagnon, F., L. Thompson-Snipes, M. Elhilali, and S. Tanguay. 2001. Murine renal cell carcinoma: evaluation of a dendritic-cell tumour vaccine. BJU Int. 88, 418–424.

    Article  PubMed  CAS  Google Scholar 

  • Chagnon, F., S. Tanguay, O.L. Ozdal, M. Guan, Z.Z. Ozen, J.S. Ripeau, M. Chevrette, M.M. Elhilali, and L.A. Thompson-Snipes. 2005. Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin. Cancer Res. 11, 1302–1311.

    PubMed  CAS  Google Scholar 

  • Driessens, G., P. Hoffmann, M. Pouwels, A. Zlotta, C. Schulman, T. Velu, and C.A. Bruyns. 2009. Synergy between dendritic cells and GM-CSF-secreting tumor cells for the treatment of a murine renal cell carcinoma. J. Immunother. 32, 140–144.

    Article  PubMed  CAS  Google Scholar 

  • Grabmaier, K., J.L. Vissers, M.C. De Weijert, J.C. Oosterwijk-Wakka, A. Van Bokhoven, R.H. Brakenhoff, E. Noessner, and et al. 2000. Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int. J. Cancer 85, 865–870.

    Article  PubMed  CAS  Google Scholar 

  • Hernández, J.M., M.H. Bui, K.R. Han, H. Mukouyama, D.G. Freitas, D. Nguyen, R. Caliliw, and et al. 2003. Novel kidney cancer immunotherapy based on the granulocyte-macrophage colony-stimulating factor and carbonic anhydrase IX fusion gene Clin. Cancer Res. 9, 1906–1916.

    PubMed  Google Scholar 

  • Hilkens, C.M., P. Kalinski, M. de Boer, and M.L. Kapsenberg. 1997. Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype. Blood 90, 1920–1926.

    PubMed  CAS  Google Scholar 

  • Hillman, G.G., J.P. Droz, and G.P. Haas. 1994. Experimental animal models for the study of therapeutic approaches in renal cell carcinoma. In Vivo 8, 77–80.

    PubMed  CAS  Google Scholar 

  • Inoue, H., M. Iga, H. Nabeta, T. Yokoo, Y. Suehiro, S. Okano, M. Inoue, and et al. 2008. Non-transmissible Sendai virus encoding granulocyte macrophage colony-stimulating factor is a novel and potent vector system for producing autologous tumor vaccines. Cancer Sci. 99, 2315–2326.

    Article  PubMed  CAS  Google Scholar 

  • Jemal, A., R. Siegel, J. Xu, and E. Ward. 2010. Cancer statistics. CA Cancer J. Clin. 60, 277–300.

    Article  PubMed  Google Scholar 

  • Ko, Y.J. and M.B. Atkins. 2005. Chemotherapies and immunotherapies for metaststic kidney cancer. Curr. Urol. Rep. 6, 35–42.

    Article  PubMed  Google Scholar 

  • Lee, J.S., J.W. Kim, C.H. Choi, W.K. Lee, H.Y. Chung, and J.C. Lee. 2008. Anti-tumor activity of Acinetobacter baumannii outer membrane protein A on dendritic cell-based immunotherapy against murine melanoma. J. Microbiol. 46, 221–227.

    Article  PubMed  Google Scholar 

  • Lee, J.S., J.C. Lee, C.M. Lee, I.D. Jung, Y.I. Jeong, E.Y. Seong, H.Y. Chung, and Y.M. Park. 2007. Outer membrane protein A of Acinetobacter baumannii induces differentiation of CD4+ T cells toward a Th1 polarizing phenotype through the activation of dendritic cells. Biochem. Pharmacol. 74, 86–97.

    Article  PubMed  CAS  Google Scholar 

  • Leibovich, B.C., M.L. Blute, J.C. Cheville, C.M. Lohse, I. Frank, E.D. Kwon, A.L. Weaver, A.S. Parker, and H. Zincke. 2003. Prediction of progression after radical nephrectomy for patients with clear cell renal carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671.

    Article  PubMed  Google Scholar 

  • Lim, D.S., J.H. Kim, D.S. Lee, C.H. Yoon, and Y.S. Bae. 2007. DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer Immunol. Immunother. 56, 1817–1829.

    Article  PubMed  Google Scholar 

  • Mukouyama, H., N.K. Janzen, J.M. Hernandez, J.S. Lam, R. Caliliw, A.Y. Wang, R.A. Figlin, A.S. Belldegrun, and G. Zeng. 2004. Generation of kidney cancer-specific antitumor immune responses using peripheral blood monocytes transduced with a recombinant adenovirus encoding carbonic anhydrase 9. Clin. Cancer Res. 10, 1421–1429.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, D.G., R.B. Colvin, C.D. Vermillion, R.C. Pfister, and W.F. Leadbetter. 1971. Diagnosis and management of renal cell carcinoma: a clinical and pathologic study of 309 cases. Cancer 28, 1165–1177.

    Article  PubMed  CAS  Google Scholar 

  • Steinman, R.M. and J. Banchereau. 2007. Taking dendritic cells into medicine. Nature 449, 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Tsan, M.F. and G. Baochong. 2007. Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J. Endotoxin Res. 13, 6–14.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, H., Y. Nakagawa, K. Yoshida, S. Saga, K. Yoshikawa, Y. Hirao, and E. Oosterwijk. 1999. MN/CA IX/G250 as a potential target for immunotherapy of renal cell carcinomas. Br. J. Cancer. 81, 741–746.

    Article  PubMed  CAS  Google Scholar 

  • Vissers, J.L., I.J. De Vries, L.P. Engelen, N.M. Scharenborg, J. Molkenboer, C.G. Figdor, E. Oosterwijk, and G.J. Adema. 2002. Renal cell carcinoma-associated antigen G250 encodes a naturally processed epitope presented by human leukocyte antigen-DR molecules to CD4+ T lymphocytes. Int. J. Cancer. 100, 441–444.

    Article  PubMed  CAS  Google Scholar 

  • Vissers, J.L., I.J. De Vries, M.W. Schreurs, L.P. Engelen, E. Oosterwijk, C.G. Figdor, and G.J. Adema. 1999. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res. 59, 5554–5559.

    PubMed  CAS  Google Scholar 

  • Wang, Y., X.Y. Wang, J.R. Subjeck, and H.L. Kim. 2008. Carbonic anhydrase IX has chaperone-like functions and is an immunoadjuvant. Mol. Cancer Ther. 7, 3867–3877.

    Article  PubMed  CAS  Google Scholar 

  • Wiltrout, R.H., T.A. Gregorio, R.G. Fenton, D.L. Longo, P. Ghosh, W.J. Murphy, and K.L. Komschlies. 1995. Cellular and molecular studies in the treatment of murine renal cancer. Semin. Oncol. 22, 9–16.

    PubMed  CAS  Google Scholar 

  • Winzler, C., P. Rovere, M. Rescigno, F. Granucci, G. Penna, L. Adorini, V.S. Zimmermann, J. Davoust, and P. Ricciardi-Castagnoli. 1997. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G.X., J. Ireland, P. Rayman, J. Finke, and M. Zhou. 2010. Quantification of carbonic anhydrase IX expression in serum and tissue of renal cell carcinoma patients using enzyme-linked immunosorbent assay: prognostic and diagnostic potentials. Urology 75, 257–261.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Je Chul Lee or Duk Yoon Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.R., Yang, E.K., Kim, S.H. et al. Immunostimulatory Activity of Dendritic cells pulsed with carbonic anhydrase IX and Acinetobacter baumannii outer membrane protein A. J Microbiol. 49, 115–120 (2011). https://doi.org/10.1007/s12275-011-1037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1037-x

Keywords

Navigation