Skip to main content

A modified immunoblot method to identify substrates of protein kinases

Abstract

While protein kinases are key components in multiple cellular processes, efficient identification of cognate in vivo substrates remains challenging. Here we describe a powerful method to screen potential substrates of protein kinases by partial transfer of proteins from a 2D-PAGE gel to a Western blot membrane. This approach allowed precise pinpointing of candidate substrate spots in the 2D gel, and identifying physiological substrates of protein kinases in Mycobacterium tuberculosis.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Cohen, P. and A. Knebel. 2006. KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem. J. 393, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Kang, C.M., D.W. Abbott, S.T. Park, C.C. Dascher, L.C. Cantley, and R.N. Husson. 2005. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692–1704.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.H., L. Pascopella, W.R. Jacobs, Jr., and G.F. Hatfull. 1991. Site-specific integration of mycobacteriophage L5: integrationproficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88, 3111–3115.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, C.J., L. Aravind, and E.V. Koonin. 1998. Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res. 8, 1038–1047.

    PubMed  CAS  Google Scholar 

  • Machida, M., H. Kosako, K. Shirakabe, M. Ushiyama, J. Inagawa, J. Hirano, T. Nakano, Y. Bando, E. Nishida, and S. Hattori. 2007. Purification of phosphoproteins by immobilized metal affinity chromatography and its application to phosphoproteome analysis. FEBS J. 274, 1576–1587.

    Article  PubMed  CAS  Google Scholar 

  • Magasanik, B. 1995. Historical perspective, pp. 1–5. In J. Hoch and T. Silhavy (eds.), Two Component Signal Transduction. ASM Press, New York, Washington, USA.

    Google Scholar 

  • Ptacek, J., G. Devgan, G. Michaud, H. Zhu, J. Fasolo, H. Guo, G. Jona, and et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Sassetti, C.M., D.H. Boyd, and E.J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle, K. and F.M. White. 2006. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr. Opin. Biotechnol. 17, 406–414.

    Article  PubMed  CAS  Google Scholar 

  • Villarino, A., R. Duran, A. Wehenkel, P. Fernandez, P. England, P. Brodin, S.T. Cole, and et al. 2005. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol. 350, 953–963.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Choong-Min Kang or Sang Hee Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, CM., Jahng, W.J., Husson, R.N. et al. A modified immunoblot method to identify substrates of protein kinases. J Microbiol. 49, 499–501 (2011). https://doi.org/10.1007/s12275-011-0465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0465-y

Keywords

  • modified immunoblot method
  • substrates of kinases
  • partial transfer of proteins