Skip to main content

Food-borne enterococci and their resistance to oxidative stress

Abstract

Enterococci are important food-borne pathogens that cause serious infections. Several virulence factors have been described including aggregation substance, gelatinase, cytolysin, and enterococcal surface protein. The ability to cause infections is mainly dependent on the response to oxidative stress due to the production of reactive oxygen species by immune cells. The aim of our study was to analyze the resistance of enterococcal strains from food to clinically relevant antiseptic agents with regard to the presence of selected virulence factors, and to uncover potential mechanisms of the antioxidative resistance. Eighty-two enterococcal isolates from Bryndza cheese were tested using in vitro growth assays to study the ability of these isolates to survive exposure to antiseptic agents — hydrogen peroxide, hypochlorite, and Chlorhexidine. Virulence genotypes of the isolates were determined by PCR, and RT real time PCR was used for gene expression under oxidative stress. Resistance against antiseptic agents depends on the concentration of applied chemicals, on the time of exposure, but also on virulence factors of the enterococcal strains. Oxidative stress induces the expression of antioxidative enzymes and down-regulates the expression of prooxidative enzymes. These effects are dependent on the virulence genotype of the enterococcal strains. These findings are important for future research, especially concerning the role of enterococci in oral diseases.

This is a preview of subscription content, access via your institution.

References

  • Bizzini, A., C. Zhao, Y. Auffray, and A. Hartke. 2009. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J. Antimicrob. Chemother. 64, 1196–1202.

    Article  PubMed  CAS  Google Scholar 

  • Dametto, F.R., C.C.R. Ferraz, B. Paula, F.D. Gomes, A.A. Zaia, F.B. Teixeira, and F.J. de Souza. 2005. In vitro assessment of the immediate and prolonged antimicrobial action of chlorhexidine gel as an endodontic irrigant against Enterococcus faecalis. Oral Surg. Oral Med. Oral Pathol. 99, 768–772.

    Google Scholar 

  • Davis, J.M., J. Maki, and J.K. Bahcall. 2007. An in vitro comparison of the antimicrobial effects of various endodontic medicaments on Enterococcus faecalis. J. Endod. 33, 567–569.

    Article  PubMed  Google Scholar 

  • Del Papa, M.F., L.E. Hancock, V.C. Thomas, and M. Perego. 2007. Full activation of Enterococcus faecalis gelatinase by a c-terminal proteolytic cleavage. J. Bacteriol. 189, 8835–8843.

    Article  PubMed  Google Scholar 

  • Dunavant, T.R., J.D. Regan, G.N. Glickman, E.S. Solomon, and A.L. Honeyman. 2006. Comparative evaluation of endodontic irrigant against Enterococcus faecalis biofilms. J. Endod. 32, 527–531.

    Article  PubMed  Google Scholar 

  • Dutkamalen, S., S. Evers, and P. Courvalin. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 33, 24–27.

    CAS  Google Scholar 

  • Galli, D. and R. Wirth. 1991. Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance. J. Bacteriol. 173, 3029–3033.

    PubMed  CAS  Google Scholar 

  • Giraffa, G., D. Carminati, and E. Neviani. 1997. Enterococci isolated from dairy products: A review of risks and potential technological use. J. Food Prot. 60, 732–737.

    Google Scholar 

  • Haas, W. and M.S. Gilmore. 1999. Molecular nature of a novel bacterial toxin: The cytolysin of enterococcus faecalis. Med. Microbiol. Immunol. (Berl.). 187, 183–190.

    Article  CAS  Google Scholar 

  • Hidron, A.I., J.R. Edwards, J. Patel, T.C. Horan, D.M. Sievert, D.A. Pollock, and S.K. Fridkin. 2008. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 29, 996–1011.

    Article  PubMed  Google Scholar 

  • Huycke, M.M., D.F. Sahm, and M.S. Gilmore. 1998. Multiple-drug resistant enterococci: The nature of the problem and an agenda for the future. Emerg. Infect. Dis. 4, 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Jang, H.C., S. Lee, K.H. Song, J.H. Jeon, W.B. Park, S.W. Park, H.B. Kim, and et al. 2010. Clinical features, risk factors and outcomes of bacteremia due to enterococci with high-level gentamicin resistance: Comparison with bacteremia due to enterococci without high-level gentamicin resistance. J. Korean Med. Sci. 25, 3–8.

    Article  PubMed  Google Scholar 

  • Kayaoglu, G. and D. Orstavik. 2004. Virulence factors of Enterococcus faecalis: Relationship to endodontic disease. Crit. Rev. Oral Biol. Med. 15, 308–320.

    Article  PubMed  Google Scholar 

  • La Carbona, S., N. Sauvageot, J.C. Giard, A. Benachour, B. Posteraro, Y. Auffray, M. Sanguinetti, and A. Hartke. 2007. Comparative study of the physiological roles of three peroxidases (nadh peroxidase, alkyl hydroperoxide reductase and thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of enterococcus faecalis. Mol. Microbiol. 66, 1148–1163.

    Article  PubMed  Google Scholar 

  • Love, R.M. 2001. Enterococcus faecalis — a mechanism for its role in endodontic failure. Int. Endod. J. 34, 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Low, D.E., N. Keller, A. Barth, and R.N. Jones. 2001. Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: Results from the sentry antimicrobial surveillance program, 1997–1999. Clin. Infect. Dis. 32, S133–S145.

    Article  PubMed  CAS  Google Scholar 

  • Nakajo, K., R. Komori, S. Ishikawa, T. Ueno, Y. Suzuki, Y. Iwami, and N. Takahashi. 2006. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis. Oral Microbiol. Immunol. 21, 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, D.P., J.V.B. Barbizam, M. Trope, and F.B. Teixeira. 2007. In vitro antibacterial efficacy of endodontic irrigants against Enterococcus faecalis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 103, 702–706.

    Article  PubMed  Google Scholar 

  • Rams, T.E., D. Feik, V. Young, B.F. Hammond, and J. Slots. 1992. Enterococci in human periodontitis. Oral Microbiol. Immunol. 7, 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Riboulet, E., N. Verneuil, S. La Carbona, N. Sauvageot, Y. Auffray, A. Hartke, and J.C. Giard. 2007. Relationships between oxidative stress response and virulence in Enterococcus faecalis. J. Mol. Microbiol. Biotechnol. 13, 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Rozdzinski, E., R. Marre, M. Susa, R. Wirth, and A. Muscholl-Silberhorn. 2001. Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb. Pathog. 30, 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Shaked, H., Y. Carmeli, D. Schwartz, and Y. Siegman-Igra. 2006. Enterococcal bacteraemia: Epidemiological, microbiological, clinical and prognostic characteristics, and the impact of high level gentamicin resistance. Scand. J. Infect. Dis. 38, 995–1000.

    Article  PubMed  Google Scholar 

  • Sherman, J.M. 1937. The streptococci. Bacteriol. Rev. 1, 3–97.

    PubMed  CAS  Google Scholar 

  • Su, Y.A., M.C. Sulavik, P. He, K.K. Makinen, P.L. Makinen, S. Fiedler, R. Wirth, and D.B. Clewell. 1991. Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. Liquefaciens. Infect. Immun. 59, 415–420.

    PubMed  CAS  Google Scholar 

  • Toledo-Arana, A., J. Valle, C. Solano, M.J. Arrizubieta, C. Cucarella, M. Lamata, B. Amorena, J. Leiva, J.R. Penades, and I. Lasa. 2001. The enterococcal surface protein, esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67, 4538–4545.

    Article  PubMed  CAS  Google Scholar 

  • Vankerckhoven, V., T. Van Autgaerden, C. Vael, C. Lammens, S. Chapelle, R. Rossi, D. Jabes, and H. Goossens. 2004. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in Enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J. Clin. Microbiol. 42, 4473–4479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Vlková.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vlková, B., Szemes, T., Minárik, G. et al. Food-borne enterococci and their resistance to oxidative stress. J Microbiol. 49, 657–662 (2011). https://doi.org/10.1007/s12275-011-0296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0296-x

Keywords

  • Enterococcus faecalis
  • reactive oxygen species
  • oxidative stress
  • free radicals
  • infection
  • virulence