Skip to main content
Log in

Cultured bacterial diversity and human impact on alpine glacier cryoconite

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The anthropogenic effect on the microbial communities in alpine glacier cryoconites was investigated by cultivation and physiological characterization of bacteria from six cryoconite samples taken at sites with different amounts of human impact. Two hundred and forty seven bacterial isolates were included in Actinobacteria (9%, particularly Arthrobacter), Bacteroidetes (14%, particularly Olleya), Firmicutes (0.8%), Alphaproteobacteria (2%), Betaproteobacteria (16%, particularly Janthinobacterium), and Gammaproteobacteria (59%, particularly Pseudomonas). Among them, isolates of Arthrobacter were detected only in samples from sites with no human impact, while isolates affiliated with Enterobacteriaceae were detected only in samples from sites with strong human impact. Bacterial isolates included in Actinobacteria and Bacteroidetes were frequently isolated from pristine sites and showed low maximum growth temperature and enzyme secretion. Bacterial isolates included in Gammaproteobacteria were more frequently isolated from sites with stronger human impact and showed high maximum growth temperature and enzyme secretion. Ecotypic differences were not evident among isolates of Janthinobacterium lividum, Pseudomonas fluorescens, and Pseudomonas veronii, which were frequently isolated from sites with different degrees of anthropogenic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, Y., D. Yang, J. Wang, S. Xu, X. Wang, and L. An. 2006. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res. Microbiol. 157, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Christner, B.C., B.H. Kvitko, II., and J.N. Reeve. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7, 177–183.

    PubMed  CAS  Google Scholar 

  • Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Dorigo, U., A. Bérard, and J.F. Humbert. 2002. Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing. Microb. Ecol. 44, 372–380.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J., P. Morgan, A.J. Weightman, and J.C. Fry. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69, 3223–3230.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 2009. PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, Washington, USA.

    Google Scholar 

  • Hancock, P.J. 2002. Human impacts on the stream-groundwater exchange zone. Environ. Manag. 29, 763–781.

    Article  Google Scholar 

  • Ikner, L.A., R.S. Toomey, G. Nolan, J.W. Neilson, B.M. Pryor, and R.M. Maier. 2007. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb. Ecol. 53, 30–42.

    Article  PubMed  Google Scholar 

  • Jiang, H.L., S.T.L. Tay, A.M. Maszenan, and J.H. Tay. 2006. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol. Ecol. 57, 182–191.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, J.L., L.A. Beaudette, M. Hart, P. Moutoglis, J.N. Klironomos, H. Lee, and J.T. Trevors. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods 58, 169–188.

    Article  PubMed  CAS  Google Scholar 

  • Labbé, D., R. Margesin, F. Schinner, L.G. Whyte, and C.W. Greer. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated Alpine soils. FEMS Microbiol. Ecol. 59, 466–475.

    Article  PubMed  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons Press, New York, NY, USA.

    Google Scholar 

  • Margesin, R., H. Dieplinger, J. Hofmann, B. Sarg, and H. Lindner. 2005. A cold-active extracellular metalloprotease from Pedobacter cryoconitis: production and properties. Res. Microbiol. 156, 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Margesin, R., P.A. Fonteyne, F. Schinner, and J.P. Sampaio. 2007. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int. J. Syst. Evol. Microbiol. 57, 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Margesin, R., D. Labbé, F. Schinner, C.W. Greer, and L.G. Whyte. 2003a. Charcterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69, 3085–3092.

    Article  PubMed  CAS  Google Scholar 

  • ai]Margesin, R., C. Spröer, P. Schumann, and F. Schinner. 2003b. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol. 53, 1291–1296.

    Article  Google Scholar 

  • Margesin, R., G. Zacke, and F. Schinner. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct. Alp. Res. 34, 88–93.

    Article  Google Scholar 

  • Mueller, D.R., W.F. Vincent, W.H. Pollard, and C.H. Fritsen. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwigia 123, 173–197.

    Google Scholar 

  • Nocker, A., J.E. Lepo, and R.A. Snyder. 2004. Influence of an oyster reef on development of the microbial heterotrophic community of an estuarine biofilm. Appl. Environ. Microbiol. 70, 6834–6845.

    Article  PubMed  CAS  Google Scholar 

  • Øvreås, L., S. Jensen, F.L. Daae, and V. Torsvik. 1998. Microbial community changes in a perturbed agricultural soil investigated by molecular and physiological approaches. Appl. Environ. Microbiol. 64, 2739–2742.

    PubMed  Google Scholar 

  • Paerl, H.W. 1998. Structure and function of anthropogenically altered microbial communities in coastal waters. Curr. Opin. Microbiol. 1, 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Powell, S.M., J.P. Bowman, I. Snape, and J.S. Stark. 2003. Microbial community variation in pristine and polluted nearshore Antarctic sediments. FEMS Microb. Ecol. 45, 135–145.

    Article  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Saul, D.J., J.M. Aislabie, C.E. Brown, L. Harris, and J.M. Foght. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol. Ecol. 53, 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Säwström, C., P. Mumford, W. Marshall, A. Hodson, and J. Laybourn-Parry. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Pol. Biol. 25, 591–596.

    Google Scholar 

  • Stibal, M., M. Šabacká, and K. Kaštovská. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 52, 644–654.

    Article  PubMed  Google Scholar 

  • Stibal, M., M. Tranter, L.G. Benning, and J. Řehák. 2008. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol. 10, 2172–2178.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, N., S. Kohshima, and K. Seko. 2001. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res. 33, 115–122.

    Article  Google Scholar 

  • Webster, N.S. and A.P. Negri. 2006. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8, 1177–1190.

    Article  PubMed  CAS  Google Scholar 

  • Wharton, R.A., Jr., C.P. McKay, G.M. Simmons, Jr., and B.C. Parker. 1985. Cryoconite holes on glaciers. BioScience 35, 499–503.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Kum Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y.M., Kim, SY., Jung, J. et al. Cultured bacterial diversity and human impact on alpine glacier cryoconite. J Microbiol. 49, 355–362 (2011). https://doi.org/10.1007/s12275-011-0232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0232-0

Keywords

Navigation