Skip to main content
Log in

Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp.

The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9(SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Naby, M.A. 1993. Immobilization of Aspergillus niger NRC 107 xylanase and β-xylosidase, and properties of the immobilized enzymes. Appl. Biochem. Biotechnol. 38, 69–81.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar, C.N., J.C. Contreras-Esquivel, R. Rodriguez, L.A. Prado, and O. Loera. 2004. Differences in fungal enzyme productivity in submerged and solid state cultures. Food Sci. Biotechnol. 13, 109–113.

    CAS  Google Scholar 

  • Ahmed, S.A., R.A. Al-domany, N.M.A. El-Shayeb, H.H. Radwan, and A. Saleh. 2008. Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res. J. Agric. Biol. Sci. 4, 434–446.

    CAS  Google Scholar 

  • Badhan, A.K., B.S. Chadha, J. Kaur, H.S. Saini, and M.K. Bhat. 2007. Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Biores. Technol. 98, 504–510.

    Article  CAS  Google Scholar 

  • Beg, K.Q., B. Bhushan, M. Kapoor, and G.S. Hoondal. 2000. Enhanced production of thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb. Technol. 27, 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Betigeri, S.S. and S.H. Neau. 2002. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23, 3627–3636.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method of the quantification of microgram quantities of proteins utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, V.C.F., F.J. Contesini, and P.O. Carvalho. 2009. Enantio selective behavior of lipases from Aspergillus niger immobilized in different supports. J. Ind. Microbiol. Biotechnol. 36, 949–954.

    Article  CAS  PubMed  Google Scholar 

  • De Queiroz, A.A.A., E.D. Passo, S.B. Alves, and G.S. Silva. 2006. Alginate-poly (vinyl alcohol) core-shell microspheres for lipase immobilization. J. Appl. Polym. Sci. 102, 1553–1560.

    Article  Google Scholar 

  • Ellaiah, P., B. Srinivasulu, and K. Adinarayana. 2004. Optimization studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem. 39, 529–534.

    Article  CAS  Google Scholar 

  • Ertesvag, H. and S. Valla. 1998. Biosynthesis and applications of alginates. Polym. Degrad. Stab. 59, 85–91.

    Article  CAS  Google Scholar 

  • Germano, S., A. Pandey, C.A. Osaku, S.N. Rocha, and C.R. Soccol. 2003. Characterization and stability of protease from Penicillium sp. produced by solid-state fermentation. Enzyme Microb. Technol. 32, 246–251.

    Article  CAS  Google Scholar 

  • Gusek, T.W. and J.E. Kinsella. 1988. Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem. J. 246, 511–517.

    Google Scholar 

  • Hasbay Ifrij, I. and Z.B. Ögel. 2002.Production of neutral and alkaline extracellular proteases by the thermophilic fungus, Scytalidium thermophilum, grown on microcrystalline cellulose. Biotechnol. Lett. 24, 1107–1110.

    Article  CAS  Google Scholar 

  • Jensen, B., P. Nebelong, J. Olsen, and M. Reeslev. 2002. Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnol. Lett. 24, 41–45.

    Article  CAS  Google Scholar 

  • Johnvesly, B. and G.R. Naik. 2001. Studies on the production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem. 37, 139–144.

    Article  CAS  Google Scholar 

  • Joo, H.S., C.G. Kumar, G.C. Park, K.T. Kim, S.R. Paik, and C.S. Chang. 2002. Optimization of the production of an extracellular alkaline protease from Bacillus Horikoshii. Process Biochem. 38, 155–159.

    Article  CAS  Google Scholar 

  • Kembhavi, A.A., A. Kulkarni, and A. Pant. 1993. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No.64. Appl. Biochem. Biotechnol. 38, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, J.F., E.H.M. Melo, and K. Jumel. 1990. Immobilized enzymes and cells. Chem. Eng. Prog. 45, 81–89.

    Google Scholar 

  • Ko, J.A., S.Y. Koo, and H.J. Park. 2008. Effects of alginate microencapsulation on the fibrinolytic activity of fermented soybean paste (Cheonggukjang) extract. Food Chem. 111, 921–924.

    Article  CAS  Google Scholar 

  • Li, D.C., Y.J. Yang, and C.Y. Shen. 1997. Protease production by the thermophilic fungus Thermomyces lanuginosus. Mycol. Res. 101, 18–22.

    Article  CAS  Google Scholar 

  • Macchione, M.M., C.W. Merheb, E. Gomes, and R. Silva. 2008. Protease production by different thermophilic fungi. Appl. Biochem. Biotechnol. 146, 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Marcy, R.M., T.C. Engelhardt, and J.M. Upadhyay. 1984. Isolation, partial purification, and some properties of protease I from a thermophilic mold Thermoascus aurantiacus var. levisporus. Mycopathologia 87, 57–65.

    Article  CAS  Google Scholar 

  • Merheb, C.W., H. Cabral, E. Gomes, and R. Da-Silva. 2007. Partial characterization of protease from a thermophilic fungus, Thermoascus aurantiacus, and its hydrolytic activity on bovine casein. Food Chem. 104, 127–131.

    Article  CAS  Google Scholar 

  • Morita, H. and Y. Fujio. 1999. Polygalacturonase production of Rhizopus sp. MKU 18 using a metal-ion-regulated liquid medium. J. Gen. Appl. Microbiol. 45, 199–201.

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue, A.J., C.S. Mahon, D.H. Goetz, J.M. O’Malle, D.M. Gallagher, M. Zhou, P.G. Murray, C.S. Craik, and M.G. Tuohy. 2008. Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersoni. J. Biol. Chem. 283, 29186–29195.

    Article  PubMed  Google Scholar 

  • Patel, R., M. Dodia, and S.P. Singh. 2005. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem. 40, 3569–3575.

    Article  CAS  Google Scholar 

  • Pekkarinen, A.I., B.L. Jones, P. Niku, and L. Marja. 2002. Purification and properties of an alkaline proteinase of Fusarium culmorum. Eur. J. Biochem. 269, 798–807.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, M.V. and B.K. Lonsane. 1991. Ability of a solid state fermentation technique to significantly minimize catabolic repression of α-amilase production by Bacillus licheniformis M27. Appl. Microbiol. Biotechnol. 35, 591–593.

    Article  CAS  Google Scholar 

  • Rao, M., A. Tanksale, M. Ghatge, and V. Deshpande. 1998. Molecular and biotechnological aspect of microbial proteases. Microbiol. Mol. Biol. R. 62, 597–635.

    CAS  Google Scholar 

  • Sandhya, C., A. Sumantha, G. Szakacs, and A. Pandey. 2005. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689–2694.

    Article  CAS  Google Scholar 

  • Santos, R.M.D.B., A.A.P. Firmino, C.M. de Sá, and C.R. Felix. 1996. Keratinolytic activity of Aspergillus fumigates fresenius. Curr. Microbiol. 36, 531–537.

    Google Scholar 

  • Sarath, G., R.S.D.L. Motte, and F.W. Wagner. 1996. Protease assay methods, pp. 25–55. In R.J. Beynon and J.S. Bond (eds.), Proteolytic enzymes a practical approach, vol. 3. New York Oxford University Press, USA.

    Google Scholar 

  • Sette, L.D., M.R.Z. Passarini, C. Delarmelina, F. Salati, and M.C.T. Duarte. 2006. Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J. Microb. Biotechnol. 22, 1185–1195.

    Article  CAS  Google Scholar 

  • Silva, D., E.S. Martins, R.S.R. Leite, R. Da Silva, V. Ferreira, and E. Gomes. 2007. Purification and characterization of an exopolygalacturonase produced by Penicillium viridicatum RFC3 in solid-state fermentation. Process Biochem. 42, 1237–1243.

    Article  CAS  Google Scholar 

  • Smidsrod, O. and G. Skajak-Braek. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Stchigel, A.M., M. Sagués, J. Cano, and J. Guarro. 2000. Three new thermotolerant species of Corynascus from soil, with a key to the known species. Mycol. Res. 104, 879–887.

    Article  CAS  Google Scholar 

  • Tremacoldi, C.R. and E.C. Carmona. 2005. Production of extracellular alkaline proteases by Aspergillus clavatus. World J. Microbiol. Biotechnol. 21, 169–172.

    Article  CAS  Google Scholar 

  • Van Oorschot, C. 1977. The genus Myceliophthora. Persoonia 9, 401–408.

    Google Scholar 

  • Van Oorschot, C. 1980. A revision of Chrysosporium and allied genera. Stud. Mycol. 20, 1–89.

    Google Scholar 

  • Won, K., S. Kim, K. Kim, Park, and H.W.S. Moon. 2005. Optimization of lipase entrapment in Ca alginate gel beads. Process Biochem. 40, 2149–2154.

    Article  CAS  Google Scholar 

  • Worsfold, P.J. 1995. Classification and chemical characteristics of immobilized enzymes. Pure Appl. Chem. 67, 597–600.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Orlando Bonilla-Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanphorlin, L.M., Facchini, F.D.A., Vasconcelos, F. et al. Production, partial characterization, and immobilization in alginate beads of an alkaline protease from a new thermophilic fungus Myceliophthora sp.. J Microbiol. 48, 331–336 (2010). https://doi.org/10.1007/s12275-010-9269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-9269-8

Keywords

Navigation