Skip to main content

Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea

An Erratum to this article was published on 01 February 2011

Abstract

A Gram-positive, rod-shaped, endospore-forming organism, strain BL3-6T, was isolated from tidal flat sediments of the Yellow Sea in the region of Tae-An. A 16S rRNA gene sequence analysis demonstrated that this isolate belongs to the Bacillus cereus group, and is closely related to Bacillus mycoides (99.0% similarity), Bacillus thuringiensis (99.0%), Bacillus weihenstephanensis (99.0%), Bacillus cereus (98.9%), Bacillus anthracis (98.8%), and Bacillus pseudomycoides (98.1%). The phylogenetic distance from any validly described Bacillus species outside the Bacillus cereus group was less than 95.6%. The DNA G+C content of the strain was 39.4 mol% and the major respiratory quinone was menaquinone-7. The major cellular fatty acids were iso-C14:0 (17.8%), iso-C16:0 (15.8%), and iso-C12:0 (11.3%). The diagnostic amino acid of the cell wall was meso-diaminopimelic acid and the major cell wall sugar was galactose. The results of DNA-DNA hybridization (<55.6%) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain BL3-6T from the published Bacillus species. BL3-6T therefore represents a new species, for which the name Bacillus gaemokensis sp. nov. is proposed, with the type strain BL3-6T (=KCTC 13318T =JCM 15801T).

This is a preview of subscription content, access via your institution.

References

  • Ahmed, I., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57, 1117–1125.

    PubMed  Article  CAS  Google Scholar 

  • Ash, C., J.A. Farrow, M. Dorsch, E. Stackebrandt, and M.D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343–346.

    PubMed  Article  CAS  Google Scholar 

  • Cardazzo, B., E. Negrisolo, L. Carraro, L. Alberghini, T. Patarnello, and V. Giaccone. 2008. Multiple-locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74, 850–860.

    PubMed  Article  CAS  Google Scholar 

  • Chang, Y.H., J. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim, and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52, 377–381.

    PubMed  CAS  Google Scholar 

  • Chang, Y.H., M.Y. Jung, I.S. Park, and H.M. Oh. 2008. Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int. J. Syst. Evol. Microbiol. 58, 2316–2320.

    PubMed  Article  CAS  Google Scholar 

  • Claus, D. and R.C.W. Berkeley. 1986. Genus Bacillus Cohn 1872, pp. 1105–1140. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Bergey’s manual of systematic bacteriology, vol. 2. The Williams and Wilkins Co., Baltimore, USA.

    Google Scholar 

  • Drobniewski, F.A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6, 324–338.

    PubMed  CAS  Google Scholar 

  • Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    PubMed  Article  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40, 783–791.

    Article  Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c, Seattle: Department of Genetics, University of Washington, USA.

    Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Gonzalez, J.M. and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    PubMed  Article  CAS  Google Scholar 

  • Granum, P.E. and T. Lund. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157, 223–228.

    PubMed  Article  CAS  Google Scholar 

  • Henderson, I., C.J. Duggleby, and P.C.B. Turnbull. 1994. Differentiation of Bacillus antliracis from other Bacillus cereus group bacteria with the PCR. Int. J. Syst. Bacteriol. 44, 99–105.

    PubMed  Article  CAS  Google Scholar 

  • Jackson, P.J., E.A. Walthers, A.S. Kalif, K.L. Richmond, D.M. Adair, K.K. Hill, C.R. Kuske, G.L. Andersen, K.H. Wilson, M. Hugh-Jones, and P. Keim. 1997. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates. Appl. Environ. Microbiol. 63, 1400–1405.

    PubMed  CAS  Google Scholar 

  • Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. In H.N. Munro (ed.). Academic Press, New York, USA.

    Google Scholar 

  • Kaneko, T., R. Nozaki, and K. Aizawa. 1978. Deoxyribonucleic acid relatedness between Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Microbiol. Immunol. 22, 639–641.

    PubMed  CAS  Google Scholar 

  • Kim, W., J.Y. Kim, S.L. Cho, S.W. Nam, J.W. Shin, Y.S. Kim, and H.S. hin. 2008. Glycosyltransferase — a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group. J. Med. Microbiol. 57, 279–286.

    PubMed  Article  CAS  Google Scholar 

  • Komagata, K. and K. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics. In Method in Microbiology, vol. 19, pp. 161–207. R.R. Colwell and R. Grigorova (eds.). Academic press, London, UK.

    Google Scholar 

  • Lechner, S., R. Mayr, K.P. Francis, B.M. Pruss, T. Kaplan, E. Wiessner-Gunkel, G.S. Stewart, and S. Scherer. 1998. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int. J. Syst. Bacteriol. 48, 1373–1382.

    PubMed  Article  CAS  Google Scholar 

  • Nakamura, L.K. 1998. Bacillus pseudomycoides sp. nov. Int. J. Syst. Bacteriol. 48, 1031–1035.

    PubMed  Article  CAS  Google Scholar 

  • Nakamura, L.K. and M.A. Jackson. 1995. Clarification of the taxonomy of Bacillus mycoides. J. Appl. Microbiol. 45, 46–49.

    CAS  Google Scholar 

  • Priest, F.G., M. Goodfellow, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134, 1847–1882.

    PubMed  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.

    PubMed  CAS  Google Scholar 

  • Seki, T., C. Chung, H. Mikami, and Y. Oshima. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28, 182–189.

    Article  Google Scholar 

  • Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization, pp. 607–654. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Microbiol. 44, 846–849.

    CAS  Google Scholar 

  • Staneck, J.L. and G.D. Roberts. 1974. Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. Appl. Microbiol. 28, 226–231.

    PubMed  CAS  Google Scholar 

  • Stenfors Arnesen, L.P., A. Fagerlund, and P.E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606.

    PubMed  Article  CAS  Google Scholar 

  • Venkateswaran, K., M. Kempf, F. Chen, M. Satomi, W. Nicholson, and R. Kern. 2003. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int. J. Syst. Evol. Microbiol. 53, 165–172.

    PubMed  Article  CAS  Google Scholar 

  • von Stetten, F., R. Mayr, and S. Scherer. 1999. Climatic influence on mesophilic Bacillus cereus and psychrotolerant Bacillus weihenstephanensis population in tropical temperate and alpine soil. Environ. Microbiol. 1, 503–515.

    Article  Google Scholar 

  • Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, and et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hyo Chang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12275-011-0548-9

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, MY., Paek, W.K., Park, IS. et al. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J Microbiol. 48, 867–871 (2010). https://doi.org/10.1007/s12275-010-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0148-0

Keywords

  • B. cereus
  • B. gaemokensis sp. nov.
  • phylogenetic
  • new species