Skip to main content
Log in

Patterns of survival and volatile metabolites of selected Lactobacillus strains during long-term incubation in milk

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The focus of this study was to monitor the survival of populations and the volatile compound profiles of selected Lactobacillus strains during long-term incubation in milk. The enumeration of cells was determined by both the Direct Epifluorescent Filter Technique using carboxyfluorescein diacetate (CFDA) staining and the plate method. Volatile compounds were analysed by the gas-chromatography technique. All strains exhibited good survival in cultured milks, but Lactobacillus crispatus L800 was the only strain with comparable growth and viability in milk, assessed by plate and epifluorescence methods. The significant differences in cell numbers between plate and microscopic counts were obtained for L. acidophilus strains. The investigated strains exhibited different metabolic profiles. Depending on the strain used, 3 to 8 compounds were produced. The strains produced significantly higher concentrations of acetic acid, compared to other volatiles. Lactobacillus strains differed from one another in number and contents of the volatile compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alewijn, M., E.L. Sliwinski, and J.T.M. Wouters. 2003. A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese. Int. Dairy J. 13, 733–741.

    Article  CAS  Google Scholar 

  • Auty, M.A.E., G.E. Gardiner, S.J. McBrearty, E.O. O’sullivan, D.M. Mulvihill, J.K. Collins, G.F. Fitzgerald, C. Stanton, and R.P.M. Ross. 2001. Direct in situ viability assessment of bacteria in probiotic dairy products using viability staining in conjunction with confocal scanning laser microscopy. Appl. Environ. Microbiol. 67, 420–425.

    Article  PubMed  CAS  Google Scholar 

  • Banina, A., M. Vukasinovic, S. Brankovic, D. Fira, M. Kojic, and L. Topisirovic. 1997. Characterization of natural isolate Lactobacillus acidophilus BGRA43 useful for acidophilus milk production. J. Appl. Microbiol. 94, 593–599.

    Google Scholar 

  • Baron, M., D. Roy, and J.C. Vuillemard. 2000. Biochemical characteristics of fermented milk produced by mixed-cultures of lactic starters and bifidobacteria. Le Lait 80, 465–478.

    Article  CAS  Google Scholar 

  • Beshkova, D., E. Simova, G. Frengova, and Z. Simov. 1998. Production of flavour compounds by yogurt starter cultures. J. Ind. Microbiol. Biotechnol. 20, 180–186.

    Article  CAS  Google Scholar 

  • Brasheras, M.M. and S.E. Gilliland. 1995. Survival during frozen and subsequent refrigerated storage of Lactobacillus acidophilus cells as influenced by the growth phase. J. Dairy Sci. 78, 2326–2335.

    Article  Google Scholar 

  • Bunthof, C.J. and T. Abee. 2002. Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters. Appl. Environ. Microbiol. 68, 2934–2942.

    Article  PubMed  CAS  Google Scholar 

  • Bunthof, C., K. Bloemen, P. Breeuwer, F. Rombouts, and T. Abee. 2001. Flow cytometric assessment of viability of lactic acid bacteria. Appl. Environ. Microbiol. 67, 2326–2335.

    Article  PubMed  CAS  Google Scholar 

  • Bunthof, C., S. Braak, P. Breeuwer, F. Rombouts, and T. Abee. 1999. Rapid fluorescence assessment of the viability of stressed Lactococcus lactis. Appl. Environ. Microbiol. 65, 3681–3689.

    PubMed  CAS  Google Scholar 

  • Coeuret, H., S. Dubernet, M. Bernardeau, M. Gueguen, and J.P. Vernoux. 2003. Isolation, characterization and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait 83, 269–306.

    Article  CAS  Google Scholar 

  • Fernandez-Garcia, E., M. Carbonell, P. Gaya, and M. Nunez. 2004. Evolution of the volatile components of ewes raw milk Zamorano cheese. Int. Dairy J. 14, 701–711.

    Article  CAS  Google Scholar 

  • Fernandez-Murga, M.L., A.P. De Ruiz Holgado, and G.F. De Valdez. 1998. Survival rate and enzyme activities of Lactobacillus acidophilus following frozen storage. Cryobiology 36, 315–319.

    Article  PubMed  Google Scholar 

  • Gardini, F., R. Lanciotti, M.E. Guerzoni, and S. Torriani. 1999. Evaluation of aroma production and survival of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in fermented milks. Int. Dairy J. 9, 125–134.

    Article  Google Scholar 

  • Gomes, A.M.P. and F.X. Malcata. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10, 139–157.

    Article  CAS  Google Scholar 

  • Helland, M.M., T. Wicklund, and J.A. Narvhus. 2004. Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. Int. Dairy J. 14, 957–965.

    Article  CAS  Google Scholar 

  • Hunger, W. and N. Peitersen. 1993. New technical aspects of the preparation of starter cultures. Int. Dairy Fed. Bull. 277, 1–27.

    Google Scholar 

  • Joux, F. and F. Lebaron. 2000. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2, 1523–1535.

    Article  PubMed  CAS  Google Scholar 

  • Lahtinen, S., M. Gueimonde, A. Ouwehand, J. Reinikainen, and S. Salminen. 2006. Comparison of methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol. 23, 571–577.

    Article  PubMed  Google Scholar 

  • Leroy, F. and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15, 67–78.

    Article  CAS  Google Scholar 

  • Macciola, V., G. Candela, and A. De Leonardis. 2008. Rapid gaschromatographic method for the determination of diacetyl in milk, fermented milk and butter. Food Control 19, 873–878.

    Article  CAS  Google Scholar 

  • Marilley, L. and M. Casey. 2004. Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microb. 90, 139–159.

    Article  CAS  Google Scholar 

  • Marshall, V.M. and W.M. Cole. 1983. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. J. Dairy Res. 50, 375–379.

    Article  CAS  Google Scholar 

  • McSweeney, P. and M. Sousa. 2000. Biochemical pathways for the production of flavour compounds in cheeses during ripening. Le Lait 80, 293–324.

    Article  CAS  Google Scholar 

  • Mikš, M.H. and I. Warmińska-Radyko. 2008. Selected fluorescent techniques in the research of the physiological state and viability of bacteria cells in food. Medycyna Wet. 64, 623–627.

    Google Scholar 

  • Montes, R.G., T.M. Bayless, J.M. Saavedra, and J.A. Perman. 1995. Effects of milks inoculated with Lactobacillus acidophilus or a yoghurt starter culture in lactose-maldigesting children. J. Dairy Sci. 78, 1657–1664.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, Y., M.C. Collado, M.A. Ferrus, J.M. Cobo, E. Hernandez, and M. Hernandez. 2006. Viability assessment of lactic acid bacteria in commercial dairy products stored at 4°C using LIVE/DEAD® BacLight™ staining and conventional plate counts. Int. J. Food Sci. Technol. 41, 275–280.

    Article  CAS  Google Scholar 

  • Øtlie, H.M., M.H. Helland, and J.A. Nervhus. 2003. Growth and metabolism of selected strains of probiotic bacteria in milk. Int. J. Food Microb. 87, 17–27.

    Article  CAS  Google Scholar 

  • Pakdeeto, A., N. Naranong, and S. Tanasupawat. 2003. Diacetyl of lactic acid bacteria from milk and fermented foods in Thailand. J. Gen. Appl. Microbiol. 49, 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Papadimitriou, K., H. Pratsinis, G. Nebe-Von-Caron, D. Kletsas, and E. Tsakalidou. 2006. Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescence probes. Int. J. Food Microbiol. 111, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Rault, A., C. Beal, S. Ghorbal, J.C. Ogier, and M. Bouix. 2007. Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 55, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Reguła, A. 2007. Free fatty acid profiles of fermented beverages made from ewe’s milk. Le Lait 87, 71–77.

    Article  CAS  Google Scholar 

  • Tavaria, F.K., T.G. Tavares, A.C. Silva-Ferreira, and F.X. Malcata. 2006. Contribution of coagulant and native microflora to the volatilefree fatty acid profile of an artisanal cheese. Int. Dairy J. 16, 886–894.

    Article  CAS  Google Scholar 

  • Vinderola, C.G. and J.A. Reinheimer. 2000. Enumeration of Lactobacillus casei in the presence of L. acidophilus, bifidobacteria and lactic starter bacteria in fermented dairy products. Int. Dairy J. 10, 271–275.

    Article  Google Scholar 

  • Warmińska-Radyko, I., M. Olszewska, and M. Mikš-Krajnik. 2010. Effect of temperature and sodium chloride on the growth and metabolism of Lactococcus strains in long-term incubation of milk. Milchwissenschaft 65, 32–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Olszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łaniewska-Trokenheim, Ł., Olszewska, M., Mikš-Krajnik, M. et al. Patterns of survival and volatile metabolites of selected Lactobacillus strains during long-term incubation in milk. J Microbiol. 48, 445–451 (2010). https://doi.org/10.1007/s12275-010-0056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-010-0056-3

Keywords

Navigation