Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli: Purification and characterization

Abstract

The increasing problem of antibiotic resistance among pathogenic bacteria requires novel strategies for the construction of multiple, joined genes of antimicrobial agents. The strategy used in this study involved synthesis of a cDNA-encoding hinnavin II/α-melanocyte-stimulating hormone (hin/MSH) hybrid peptide, which was cloned into the pET32a (+) vector to allow expression of the hybrid peptide as a fusion protein in Escherichia coli BL21 (DE3). The resulting expression of fusion protein Trx-hin/MSH could reach up to 20% of the total cell proteins. More than 50% of the target protein was in a soluble form. The target fusion protein from the soluble fraction, Trx-hin/MSH, was easily purified by Ni2+-chelating chromatography. Then, enterokinase cleavage effectively cleaved the Trx-hin/MSH to release the recombinant hin/MSH (rhin/MSH) hybrid peptide. After removing the contaminants, we purified the recombinant hybrid peptide to homogeneity by reversed-phase FPLC and obtained 210 mg of pure, active rhin/MSH from 800 ml of culture medium. Antimicrobial activity assay demonstrated that rhin/MSH had a broader spectrum of activity than did the parental hinnavin II or MSH against fungi and Gram-positive and Gram-negative bacteria. These results suggest an efficient method for producing high-level expression of various kinds of antimicrobial peptides that are toxic to the host, a reliable and simple method for producing different hybrid peptides for biological studies.

This is a preview of subscription content, access via your institution.

References

  1. Andreu, D., J. Ubach, A. Boman, B. Wahlin, D. Wade, R.B. Merrifield, and H.G. Boman. 1992. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 296, 190–194.

    Article  PubMed  CAS  Google Scholar 

  2. Bao, W.J., Y.G. Gao, Y.G. Chang, T.Y. Zhang, X.J. Lin, X.Z. Yan, and H.Y. Hu. 2006. Highly efficient expression and purification system of small-size protein domains in Escherichia coli for biochemical characterization. Protein Expr. Purif. 47, 599–606.

    Article  PubMed  CAS  Google Scholar 

  3. Boman, H.G., D. Wade, I.A. Boman, B. Wåhlin, and R.B. Merrifield. 1989. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 259, 103–106.

    Article  PubMed  CAS  Google Scholar 

  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  5. Catania, A. and J.M. Lipton. 1993. α-Melanocyte stimulating hormone in the modulation of host reactions. Endor. Rev. 14, 564–576.

    CAS  Google Scholar 

  6. Cutuli, M., S. Cristianl, J.M. Lipton, and A. Catania. 2000. Antimicrobial effects of α-MSH peptides. J. Leukocyte Biol. 67, 233–239.

    PubMed  CAS  Google Scholar 

  7. Ferre, R., E. Badosa, L. Feliu, M. Planas, E. Montesinos, and E. Bardají. 2006. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl. Environ. Microbiol. 72, 3302–3308.

    Article  PubMed  CAS  Google Scholar 

  8. Fink, J., R.B. Merrifield, A. Boman, and H.G. Boman. 1989. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity. J. Biol. Chem. 264, 6260–6267.

    PubMed  CAS  Google Scholar 

  9. Giacometti, A., O. Cirioni, W. Kamysz, G.D Amato, C. Silvestri, M.S. Prete, J. Gukasiak, and G. Scalise. 2003. Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA (1–7) M (2–9) NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24, 1315–1318.

    Article  PubMed  CAS  Google Scholar 

  10. Giacometti, A., O. Cirioni, W. Kamysz, G.D Amato, C. Silvestri, M.S. Prete, J. Gukasiak, and G. Scalise. 2004. In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA (1–7) M (2–9) NH2 on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics. Diagn. Microbiol. Infect Dis. 49, 197–200.

    Article  PubMed  CAS  Google Scholar 

  11. Hancock, R.E. 1997. Peptide antibiotics. Lancet 349, 418–422.

    Article  PubMed  CAS  Google Scholar 

  12. Hidari, K.I., N. Horie, T. Murata, D. Miyamoto, T. Suzuki, T. Usui, and Y. Suzuki. 2005. Purification and characterization of a soluble recombinant human ST6Gal I functionally expressed in Escherichia coli. Glycoconj. J. 22, 1–11.

    Article  PubMed  CAS  Google Scholar 

  13. Ingham, A.B. and R.J. Moore. 2007. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem. 47, 1–9.

    Article  PubMed  CAS  Google Scholar 

  14. Jenssen, H., P. Hamill, and R.E.W. Hancock. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, J.M., S.A. Jang, B.J. Yu, B.H. Sung, J.H. Cho, and S.C. Kim. 2008. High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage. Appl. Microbiol. Biotechnol. 78, 123–130.

    Article  PubMed  CAS  Google Scholar 

  16. Kwak, H.B., S.W. Lee, D.G. Lee, K.S. Hahm, K.K. Kim, H.H. Kim, and Z.H. Lee. 2003. A hybrid peptide derived from cecropin-A and magainin-2 inhibits osteoclast differentiation. Life Sci. 73, 993–1005.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  18. LaVallie, E.R., E.A. DiBlasio, S. Kovacic, K.L. Grant, P.F. Schendel, and J.M. McCoy. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11, 187–193.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, D.G., Y. Park, P.I. Kim, H.G. Jeong, E.R. Woo, and K.S. Hahm. 2002. Infuence on the plasma membrane of Candida albicans by HP (2–9)-magainin 2 (1–12) hybrid peptide. Biochem. Biophys. Res. Commun. 297, 885–889.

    Article  PubMed  CAS  Google Scholar 

  20. Lipton, J.M. and A. Catania. 1997. Anti-inflamatory action of the neuroimmunomodulator α-MSH. Immunol. Today 18, 140–145.

    Article  PubMed  CAS  Google Scholar 

  21. Pazgier, M. and J. Lubkowski. 2006. Expression and purification of recombinant human a-defensins in Escherichia coli. Protein Expr. Purif. 49, 1–8.

    Article  PubMed  CAS  Google Scholar 

  22. Rao, X.C., S. Li, J.C. Hu, X.L. Jin, X.M. Hu, J.J. Huang, Z.J. Chen, J.M. Zhu, and F.Q. Hu. 2004. A novel carrier molecule for highlevel expression of peptide antibiotics in Escherichia coli. Protein Expr. Purif. 36, 11–18.

    Article  PubMed  CAS  Google Scholar 

  23. Sato, H. and J.B. Feix. 2008. Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrob. Agents Chemother. 52, 4463–4465.

    Article  PubMed  CAS  Google Scholar 

  24. Saugar, J.M., M.J. Rodríguez-Hernández, B.G. de la Torre, M.E. Pachón-Ibañez, M. Fernández-Reyes, D. Andreu, J. Pachón, and L. Rivas. 2006. Activity of cecropin A-melittin hybrid peptides against colistinresistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob. Agents Chemother. 50, 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  25. Schägger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  PubMed  Google Scholar 

  26. Sin, Y.S., H.J. Kang, Y.S. Jang, Y. Kim, L.K. Kim, and K.S. Hahm. 2000. Effects of the hinge region of cecropin A (1–8)-magainin 2 (1–12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochim. Biophys. Acta 1463, 209–218.

    Article  Google Scholar 

  27. Skosyrev, V.S., E.A. Kulesskiy, A.V. Yakhnim, Y.V. Temirov, and L.M. Vinokurov. 2003. Expression of the recombinant antibacterial peptide sarcotoxin IA in Eschericha coli cells. Protein Expr. Purif. 28, 350–356.

    Article  PubMed  CAS  Google Scholar 

  28. Symersky, J., J. Novak, D.T. Mcpherson, L. Delucas, and J. Mestecky. 2000. Expression of the recombinant human immunoglobulin J chain in Escherichia coli. Mol. Immunol. 37, 133–140.

    Article  PubMed  CAS  Google Scholar 

  29. Tenno, T., N. Goda, Y. Tateishi, H. Tochio, M. Mishima, H. Hayashi, M, Shirakawa, and H. Hiroaki. 2004. High throughput construction, method for expression vector of peptides for NMR study suited for isotopic labeling. Protein Eng. Des. Sel. 174, 305–314.

    Article  CAS  Google Scholar 

  30. Tian, Z.G., T.T. Dong, D. Teng, Y.L. Yang, and J.H. Wang. 2009. Design and characterization of novel hybrid peptides from LFB15 (W4, 10), HP (2–20), and cecropin A based on structure parameters by computer-aided method. Appl. Microbiol. Biotechnol. 82, 1097–1103.

    Article  PubMed  CAS  Google Scholar 

  31. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  32. Xu, X., F. Jin, X. Yu, S. Ren, J. Hu, and W. Zhang. 2007. High-level expression of the recombinant hybrid peptide cecropin A (1–8)-magainin 2 (1–12) with an ubiquitin fusion partner in Escherichia coli. Protein Expr. Purif. 55, 175–182.

    Article  PubMed  CAS  Google Scholar 

  33. Yoe, S.M., C.S. Kang, S.S. Han, and I.S. Bang. 2006. Characterization and cDNA cloning of hinnavinII, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp. Biochem. Physiol. B. 144, 199–205.

    Article  PubMed  CAS  Google Scholar 

  34. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou, Q.F., X.G. Luo, L. Ye, and T. Xi. 2007. High-level production of a novel antimicrobial peptide perinerin in Escherichia coli by fusion expression. Curr. Microbiol. 54, 366–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to In Seok Bang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bang, S.K., Kang, C.S., Han, MD. et al. Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli: Purification and characterization. J Microbiol. 48, 24–29 (2010). https://doi.org/10.1007/s12275-009-0317-1

Download citation

Keywords

  • antimicrobial peptide
  • hinnavin
  • α-melanocyte stimulating hormone (MSH)
  • hybrid peptide
  • fusion expression