Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi

Abstract

Kimchi is a Korean traditional fermented food made of brined vegetables, with a variety of spices. Various microorganisms are associated with the kimchi fermentation process. This study was undertaken in order to apply quantitative real-time PCR targeting the 16S and 26S rRNA genes for the investigation of dynamics of bacterial, archaeal, and yeast communities during fermentation of various types of kimchi. Although the total bacterial and archaeal rRNA gene copy numbers increased during kimchi fermentation, the number of yeasts was not significantly altered. In 1 ng of bulk DNA, the mean number of rRNA gene copies for all strains of bacteria was 5.45×106 which was 360 and 50 times greater than those for archaea and yeast, respectively. The total gene copy number for each group of microorganisms differed among the different types of kimchi, although the relative ratios among them were similar. The common dominance of bacteria in the whole microbial communities of various types of kimchi suggests that bacteria play a principal role in the kimchi fermentation process.

This is a preview of subscription content, access via your institution.

References

  1. Bae, J.W., S.K. Rhee, J.R. Park, W.H. Chung, Y.D. Nam, I. Lee, H. Kim, and Y.H. Park. 2005. Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71, 8825–8835.

    Article  CAS  PubMed  Google Scholar 

  2. Butinar, L., S. Santos, I. Spencer-Martins, A. Oren, and N. Gunde-Cimerman. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 244, 229–234.

    Article  CAS  PubMed  Google Scholar 

  3. Chang, H.W., K.H. Kim, Y.D. Nam, S.W. Roh, M.S. Kim, C.O. Jeon, H.M. Oh, and J.W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126, 159–166.

    Article  CAS  PubMed  Google Scholar 

  4. Chelo, I.M., L. Ze-Ze, L. Chambel, and R. Tenreiro. 2004. Physical and genetic map of the Weissella paramesenteroides DSMZ 20288 chromosome and characterization of different rrn operons by ITS analysis. Microbiology 150, 4075–4084.

    Article  CAS  PubMed  Google Scholar 

  5. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257, 262–267.

    Article  CAS  PubMed  Google Scholar 

  6. de Boer, E. and R.R. Beumer. 1999. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 50, 119–130.

    Article  PubMed  Google Scholar 

  7. Dolezel, J., J. Bartos, H. Voglmayr, and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128.

    Article  CAS  PubMed  Google Scholar 

  8. Furet, J.P., P. Quenee, and P. Tailliez. 2004. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97, 197–207.

    Article  CAS  PubMed  Google Scholar 

  9. Hierro, N., B. Esteve-Zarzoso, A. Gonzalez, A. Mas, and J.M. Guillamon. 2006. Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl. Environ. Microbiol. 72, 7148–7155.

    Article  CAS  PubMed  Google Scholar 

  10. Kanagawa, T. 2003. Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323.

    CAS  PubMed  Google Scholar 

  11. Kim, M. and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91–96.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, C.W., C.Y. Ko, and D.M. Ha. 1992. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotechnol. 20, 102.

    CAS  Google Scholar 

  13. Li, S.J., H.Y. Paik, and H. Joung. 2006. Dietary patterns are associated with sexual maturation in Korean children. Br. J. Nutr. 95, 817–823.

    Article  CAS  PubMed  Google Scholar 

  14. Loureiro, V. 2002. Spoilage yeasts in foods and beverages: characterization and ecology for improved diagnosis and control. Food Res. Int. 33, 247–256.

    Article  Google Scholar 

  15. Martin, B., A. Jofre, M. Garriga, M. Pla, and T. Aymerich. 2006. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Appl. Environ. Microbiol. 72, 6040–6048.

    Article  CAS  PubMed  Google Scholar 

  16. Mheen, T.I. and T.W. Kwon. 1984. Effect of temperature and salt concentration on Kimchi fermentation. Kor. J. Food Sci. Technol. 16, 443–450.

    CAS  Google Scholar 

  17. Nan, H.M., J.W. Park, Y.J. Song, H.Y. Yun, J.S. Park, T. Hyun, S.J. Youn, Y.D. Kim, J.W. Kang, and H. Kim. 2005. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroenterol. 11, 3175–3181.

    CAS  PubMed  Google Scholar 

  18. Oh, J.Y. and Y.S. Han. 2003. Purification and characterization of L-galactono-γ-lactone oxidase in Pichia sp. isolated from kimchi. Kor. J. Food Sci. Technol. 35, 1135–1142.

    Google Scholar 

  19. Renard, A., P. Gomez di Marco, M. Egea-Cortines, and J. Weiss. 2008. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol. 126, 195–201.

    Article  CAS  PubMed  Google Scholar 

  20. Reynisson, E., H.L. Lauzon, H. Magnusson, G.O. Hreggvidsson, and V.T. Marteinsson. 2008. Rapid quantitative monitoring method for the fish spoilage bacteria Pseudomonas. J. Environ. Monit. 10, 1357–1362.

    Article  CAS  PubMed  Google Scholar 

  21. Ritalahti, K.M., B.K. Amos, Y. Sung, Q. Wu, S.S. Koenigsberg, and F.E. Loffler. 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol. 72, 2765–2774.

    Article  CAS  PubMed  Google Scholar 

  22. Roh, S.W., Y.D. Nam, H.W. Chang, Y. Sung, K.H. Kim, H.J. Lee, H.M. Oh, and J.W. Bae. 2007. Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int. J. Syst. Evol. Microbiol. 57, 2129–2131.

    Article  CAS  PubMed  Google Scholar 

  23. Roh, S.W., Y.D. Nam, H.W. Chang, Y. Sung, K.H. Kim, H.M. Oh, and J.W. Bae. 2007. Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 57, 2296–2298.

    Article  CAS  PubMed  Google Scholar 

  24. Ross, R.P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3–16.

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630.

    CAS  PubMed  Google Scholar 

  26. Takai, K. and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl. Environ. Microbiol. 66, 5066–5072.

    Article  CAS  PubMed  Google Scholar 

  27. Yeates, C., M.R. Gillings, A.D. Davison, N. Altavilla, and D.A. Veal. 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proc. Online 1, 40–47.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Woo Bae.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, EJ., Chang, HW., Kim, KH. et al. Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi. J Microbiol. 47, 682–685 (2009). https://doi.org/10.1007/s12275-009-0297-1

Download citation

Keywords

  • quantitative PCR
  • kimchi
  • bacteria
  • archaea
  • yeast