The Journal of Microbiology

, 47:641 | Cite as

Prediction of bacterial proteins carrying a nuclear localization signal and nuclear targeting of HsdM from Klebsiella pneumoniae

  • Je Chul Lee
  • Dong Sun Kim
  • Dong Chan Moon
  • Jung-Hwa Lee
  • Mi Jin Kim
  • Su Man Lee
  • Yong Seok Lee
  • Se-Won Kang
  • Eun Jung Lee
  • Sang Sun Kang
  • Eunpyo Lee
  • Sung Hee Hyun
Article

Abstract

Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism whereby bacterial proteins can interact with nuclear molecules and alter the physiology of host cells. The fully sequenced bacterial genome can predict proteins that target the nuclei of host cells based on the presence of nuclear localization signal (NLS). In the present study, we predicted bacterial proteins with the NLS sequences from Klebsiella pneumoniae by bioinformatic analysis, and 13 proteins were identified as carrying putative NLS sequences. Among them, HsdM, a subunit of KpnAl that is a type I restriction-modification system found in K. pneumoniae, was selected for the experimental proof of nuclear targeting in host cells. HsdM carried the NLS sequences, 7KKAKAKK13, in the N-terminus. A transient expression of HsdM-EGFP in COS-1 cells exhibited exclusively a nuclear localization of the fusion proteins, whereas the fusion proteins of HsdM with substitutions in residues lysine to alanine in the NLS sequences, 7AAAKAAA13, were localized in the cytoplasm. HsdM was co-localized with importin o in the nuclei of host cells. Recombinant HsdM alone methylated the eukaryotic DNA in vitro assay. Although HsdM tested in this study has not been considered to be a virulence factor, the prediction of NLS motifs from the full sequenced genome of bacteria extends our knowledge of functional genomics to understand subcellular targeting of bacterial proteins.

Keywords

nuclear localization signal DNA methylation pathogenesis K. pneumoniae 

References

  1. Arbibe, L., D.W. Kim, E. Batsche, T. Pedron, B. Mateescu, C. Muchardt, C. Parsot, and P.J. Sansonetti. 2007. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nature Immunol. 8, 47–56.Google Scholar
  2. Benabdillah, R., L.J. Mota, S. Lutzelschwab, E. Demoinet, and G.R. Cornelis. 2004. Identification of a nuclear targeting signal in YopM from Yersinia spp. Microb. Pathog. 36, 247–261.CrossRefPubMedGoogle Scholar
  3. Choi, C.H., S.H. Hyun, J.Y. Lee, J.S. Lee, Y.S. Lee, S.A. Kim, J.P. Chae, S.M. Yoo, and J.C. Lee. 2008. Acinetobacter baumannii outer membrane protein A targets the nucleus and induces cytotoxicity. Cell. Microbiol. 10, 309–319.PubMedGoogle Scholar
  4. Cokol, M., R. Nair, and B. Rost. 2000. Finding nuclear localization signals. EMBO Rep. 1, 411–415.CrossRefPubMedGoogle Scholar
  5. Cortes, G., N. Borrell, B. de Astorza, C. Gomez, J. Sauleda, and S. Alberti. 2002. Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect. Immun. 70, 2583–2590.CrossRefPubMedGoogle Scholar
  6. Hanly, W.C., J.E. Artwohl, and B.T. Bennett. 1995. Review of polyclonal antibody production procedures in mammals and poultry. ILAR J. 37, 93–118.PubMedGoogle Scholar
  7. Haraga, A. and S.I. Miller. 2003. A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun. 71, 4052–4058.CrossRefPubMedGoogle Scholar
  8. Izaurralde, E. and S. Adam. 1998. Transport of macromolecules between the nucleus and the cytoplasm. RNA 4, 351–367.PubMedGoogle Scholar
  9. Lara-Tejero, M. and J.E. Galán. 2000. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290, 354–357.CrossRefPubMedGoogle Scholar
  10. Lawlor, M.S., J. Hsu, P.D. Rick, and V.L. Miller. 2005. Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol. Microbiol. 58, 1054–1073.CrossRefPubMedGoogle Scholar
  11. Lee, N.S., O. Rutebuka, T. Arakawa, T.A. Bickle, and J. Ryu. 1997. KpnAI, a new type I restriction-modification system in Klebsiella pneumoniae. J. Mol. Biol. 271, 342–348.CrossRefPubMedGoogle Scholar
  12. Moroianu, J. 1998. Distinct nuclear import and export pathways mediated by members of the karyopherin b family. J. Cell. Biochem. 70, 231–239.CrossRefPubMedGoogle Scholar
  13. Nassif, X. and P.J. Sansonetti. 1986. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect. Immun. 54, 603–608.PubMedGoogle Scholar
  14. Obarska-Kosinska, A., J.E. Taylor, P. Callow, J. Orlowski, J.M. Bujnicki, and G.G. Kneale. 2008. HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. J. Mol. Biol. 376, 438–452.CrossRefPubMedGoogle Scholar
  15. Okuda, J., T. Toyotome, N. Kataoka, M. Ohno, H. Abe, Y. Shimura, A. Seyedarabi, R. Pickersgill, and C. Sasakawa. 2005. Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulate host immune responses. Biochem. Biophys. Res. Commun. 333, 531–539.CrossRefPubMedGoogle Scholar
  16. Pemberton, L.F., G. Blobel, and J.S. Rosenblum. 1998. Transport routes through the nuclear pore complex. Curr. Opinion. Cell Biol. 10, 392–399.CrossRefPubMedGoogle Scholar
  17. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Press, New York, N.Y., USA.Google Scholar
  18. Shankar-Sinha, S., G.A. Valencia, B.K. Janes, J.K. Rosenberg, C. Whitfield, R.A. Bender, T.J. Standiford, and J.G. Younger. 2004. The Klebsiella pneumoniae O antigen contributes to bacteremia and lethality during murine pneumonia. Infect. Immun. 72, 1423–1430.CrossRefPubMedGoogle Scholar
  19. Suzuki, K., I. Suzuki, A. Leodolter, S. Alonso, S. Horiuchi, K. Yamashita, and M. Perucho. 2006. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9, 199–207.CrossRefPubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Je Chul Lee
    • 1
  • Dong Sun Kim
    • 2
  • Dong Chan Moon
    • 1
  • Jung-Hwa Lee
    • 1
  • Mi Jin Kim
    • 2
  • Su Man Lee
    • 2
  • Yong Seok Lee
    • 3
  • Se-Won Kang
    • 3
  • Eun Jung Lee
    • 4
  • Sang Sun Kang
    • 5
  • Eunpyo Lee
    • 6
  • Sung Hee Hyun
    • 4
  1. 1.Department of MicrobiologyKyungpook National University School of MedicineDaeguRepublic of Korea
  2. 2.Department of AnatomyKyungpook National University School of MedicineDaeguRepublic of Korea
  3. 3.Department of Parasitology, College of Medicine and Frontier Inje Research for Science and TechnologyInje UniversityBusanRepublic of Korea
  4. 4.Department of Biomedical Laboratory ScienceEulji University, School of MedicineDaejeonRepublic of Korea
  5. 5.School of Science EducationChungbuk National UniversityChungbukRepublic of Korea
  6. 6.Department of MedicineEulji UniversityDaejeonRepublic of Korea

Personalised recommendations