Skip to main content
Log in

The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study analyzed ten strains of coagulase-negative staphylococci (CNS) involved in nosocomial infections in three Brazilian hospitals. Their antibiotic susceptibility profile showed that most strains exhibited multiple antibiotic resistance and possessed the mecA gene. The ability of these strains to adhere to polystyrene microtiter plates was also tested and nine of them proved to be biofilm producers at least in one of the three conditions tested: growth in TSB, in TSB supplemented with NaCl, or in TSB supplemented with glucose. The presence of the bap gene, which codes for the biofilm-associated protein (Bap), was investigated in all ten strains by PCR. AU strains were bop-positive and DNA sequencing experiments confirmed that the fragments amplified were indeed part of a bap gene. The presence of the icaA gene, one of the genes involved in polysaccharide intercellular adhesin (PIA) formation, was also detected by PCR in eight of the ten strains tested. The two icaA-negative strains were either weak biofilm producer or no biofilm producer, although they were bop-positive. To our knowledge, this is the first report demonstrating the presence of the bap gene in nosocomial isolates of CNS, being also the first report on the presence of this gene in Staphylococcus haemolyticus and S. cohnii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araújo, G.L., L.R. Coelho, C.B. Carvalho, R.M. Maciel, A.Z. Coronado, R. Rozenbaum, B. T. Ferreira-Carvalho, A.M.S. Figueiredo, and L.A. Teixeira. 2006. Commensal isolates of methicillin-resistant of Staphylococcus epidermidis are also well equipped to produced biofilm on polystyrene surfaces. J. Antimicrob. Chemother. 57, 855–864.

    Article  PubMed  Google Scholar 

  • Arciola, C.R., L. Baldassari, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39, 2151–2156.

    Article  PubMed  CAS  Google Scholar 

  • Bannerman, T.L. and S. Peacock. 2007. Staphylococcus, Micrococcus, and other catalase-positive, p. 390–411. Manual of Clinical Microbiology, 9th ed. ASM Press. Washington, D.C., USA.

    Google Scholar 

  • Christensen, G.D., L.M. Baddour, and A. Simpson. 1987. Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect. Immun. 55, 2870–2877.

    PubMed  CAS  Google Scholar 

  • Christensen, G.D., W.A. Simpson, A.L. Bisno, and E.H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37, 318–326.

    PubMed  CAS  Google Scholar 

  • Christensen, G.D., W.A. Simpson, J.J. Younger, L.M. Baddour, F.F. Barret, D.M. Melton, and E.H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006.

    PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing: M100-S16. NCCLS, Wayne, Pensylvania, EUA.

    Google Scholar 

  • Costerton, J.W., P.S. Stewart, and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  • Cucarella, C., C. Solano, J. Valle, B. Amorena, I. Lasa, and J.R. Penadés. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183, 2888–2896.

    Article  PubMed  CAS  Google Scholar 

  • Deighton, M.A., J.C. Franklin, W.J. Spicer, and B. Balkau. 1988. Species identification, antibiotic sensitivity and slime production of coagulase-negative staphylococci isolated from clinical specimens. Epidemiol. Infect. 101, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, F., H. Humphreys, and J.P. O Gara. 2005. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 43, 1973–1976.

    Article  PubMed  CAS  Google Scholar 

  • Götz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43, 1367–1378.

    Article  PubMed  Google Scholar 

  • Jones, J.W., R.J. Scott, J. Morgan, and J.V. Peter. 1992. A study of coagulase-negative staphylococci with reference to slime production, adherence, antibiotic resistance patterns and clinical significance. J. Hosp. Infect. 22, 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Knobloch, J.K.M., K. Bartscht, A. Sabottke, H. Rohde, H.H. Feucht, and D. Mack. 2001. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183, 2624–2633.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, A.S., G.C. Park, S.Y. Ryu, D.H. Lim, D.Y. Lim, C.H. Choi, Y.P. Park, and Y. Lim. 2008. Higher biofilm formation in multidrug-resistant clinical isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 32, 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Latasa, C., C. Solano, J.R. Penadés, and I. Lasa. 2006. Biofilm-associated proteins. C.R. Biol. 329, 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Nascimento, J.S., K.R.N. Santos, E. Gentilini, D. Sordelli, and M.C.F. Bastos. 2002. Phenotypic and genetic characterisation of bacteriocin-producing strains of Staphylococcus aureus involved in bovine mastitis. Vet. Microbiol. 85, 133–144.

    Article  CAS  Google Scholar 

  • NNIS System. 2004. National Nosocomial Infections Surveillance (NNIS) system report data summary from January 1992 through June 2004. Am. J. Infect. Control. 32, 470–485.

    Article  Google Scholar 

  • Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Santos, K.R.N., L.M. Teixeira, G.S. Leal, L.S. Fonseca, and P. P. Gontijo Filho. 1999. DNA typing of methicillin-resistant Staphylococcus aureus: isolates and factors associated with nosocomial acquisition in two Brazilian university hospitals. J. Med. Microbiol. 48, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Stepanovic, S., D. Sukovic, V. Hola, G. Bonaventura, S. Djukic, I. Cirkovic, and F. Ruzicka. 2007. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 15, 891–899.

    Article  Google Scholar 

  • Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton. 2002. Biofilms as differentiated communities. Annu. Rev. Microbiol. 56, 187–209.

    Article  PubMed  CAS  Google Scholar 

  • Tormo, M.A., E. Knecht, F. Götz, I. Lasa, and J.R. Penadés. 2005. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology 151, 2465–2475.

    Article  PubMed  CAS  Google Scholar 

  • Vautor, E., G. Abadie, A. Pont, and R. Thiery. 2008. Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet. Microbiol. 127, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Ziebuhr, W., V. Krimmer, S. Rachid, I. Löbner, F. Götz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32, 345–356.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Carmo de Freire Bastos.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, A., Ceotto, H., Giambiagi-deMarval, M. et al. The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol. 47, 319–326 (2009). https://doi.org/10.1007/s12275-009-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0008-y

Keywords

Navigation