Skip to main content
Log in

Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis

  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Xylose reductase (XR) is a key enzyme in xylose metabolism because it catalyzes the reduction of xylose to xylitol. In order to study the characteristics of XR from Candida tropicalis SCTCC 300249, its XR gene (xyll) was cloned and expressed in Escherichia coli BL21 (DE3). The fusion protein was purified effectively by Ni2+-chelating chromatography, and the kinetics of the recombinant XR was investigated. The Km values of the C. tropicalis XR for NADPH and NADH were 45.5 μM and 161.9 μM, respectively, which demonstrated that this XR had dual coenzyme specificity. Moreover, this XR showed the highest catalytic efficiency (kcat=1.44×l04 min−1) for xylose among the characterized aldose reductases. Batch fermentation was performed with Saccharomyces serivisiae W303-lA:pYES2XR, and resulted in 7.63 g/L cell mass, 93.67 g/L xylitol, and 2.34 g/L · h xylitol productivity. This XR coupled with its dual coenzyme specificity, high activity, and catalytic efficiency proved its utility in in vitro xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amore, R., P. Kötter, C. Küster, M. Ciriacy, and C.P. Hollenberg. 1991. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (Xyl1) from the xylose-assimilating yeast Pichia stipitis. Gene 109, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Becker, D.M. and L. Guarente. 1991. High-efficiency transformation of yeasts by electroporation. Methods Enzymol. 194, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Y. Zhou, Y. Ma, Q. Luo, and D. Wei. 2005. Expression and purification of antimicrobial peptide adenoregulin with Camidated terminus in Escherichia coli. Protein Expr. Purif. 40, 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Hacker, B., A. Habenicht, M. Kiess, and R. Mattes. 1999. Xylose utilisation: cloning and characterisation of the xylose reductase from Candida tenuis. Biol. Chem. 380, 1395–1403.

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hagerdal, B., C.F. Wahlbom, M. Gardonyi, W.H. van Zyl, R.R. Cordero Otero, and L.J. Jonsson. 2001. Metabolic engineering of Saccharomyce scerevisiae for xylose utilization. Adv. Biochem. Eng. Biot. 73, 53–84.

    CAS  Google Scholar 

  • Ho, N.W., F.P. Lin, S. Huang, P.C. Andrews, and G.T. Tsao. 1990. Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb. Technol. 12, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Jez, J.M. and T.M. Penning. 2001. The aldo-keto reductase (AKR) superfamily: an update. Chem. Biol. Interact. 130–132(1–3), 499–525.

    Article  PubMed  Google Scholar 

  • Kang, M.H., H. Ni, and T.W. Jeffries. 2003. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 106, 265–276.

    Article  Google Scholar 

  • Kavanagh, K.L., M. Klimacek, B. Nidetzky, and D.K. Wilson. 2002. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochemistry 41, 8785–8795.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, A., C. Van Zyl, A. Van Tonder, and B.A. Prior. 1995. Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61, 1580–1585.

    PubMed  CAS  Google Scholar 

  • Ladisch, M.R., K.W. Lin, M. Voloch, and G.T. Tsao. 1983. Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microbiol. Technol. 5, 82–102.

    Article  CAS  Google Scholar 

  • Lee, J.K., B.S. Koo, and S.Y. Kim. 2003. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69, 6179–6188.

    Article  PubMed  CAS  Google Scholar 

  • Luciane, S., G. Maria, A. Felipe, and S. Silvio 2001. Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI 20037 cultivated in sugarcane bagasse hydrolysate for xylitol production. Appl. Biochem. Biotechnol. 91–93, 671–680.

    Google Scholar 

  • Mayr, P., K. Bruggler, K.D. Kulbe, and B. Nidetzky 2000. D-xylose metabolism by Candida intermedia: isolation and characterisation of two forms of aldose reductase with different coenzyme specificities. J. Chromatogr. B. 737, 195–202.

    Article  CAS  Google Scholar 

  • Mishra, P. and A. Singh. 1993. Microbial pentose utilization. Adv. Appl. Microbiol. 39, 91–185.

    Article  PubMed  CAS  Google Scholar 

  • Neuhauser, W., D. Haltrich, K.D. Kulbe, and B. Nidetzky. 1997. NAD(P)H dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Biochem. J. 326, 683–692.

    PubMed  CAS  Google Scholar 

  • Nidetzky, B., K. Bruggler, R. Kratzer, and P. Mayr. 2003. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. J. Agr. Food Chem. 51, 7930–7935.

    Article  CAS  Google Scholar 

  • Oh, D.K. and S.Y. Kim. 1998. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl. Microbiol. Biot. 50, 419–425.

    Article  CAS  Google Scholar 

  • Rawat, U.B. and M.B. Rao. 1996. Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochim. Biophys. Acta. 1293, 222–230.

    PubMed  Google Scholar 

  • Verduyn, C., R. Vankleef, J. Frank, H. Schreuder, J.P. Vandijken, and W.A. Scheffers. 1985. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 226, 669–677.

    PubMed  CAS  Google Scholar 

  • Woodyer, R., M. Simurdiak, W.A. Van Der Donk, and H. Zhao. 2005. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl. Environ. Microbiol. 71, 1642–1647.

    Article  PubMed  CAS  Google Scholar 

  • Yahashi, Y., H. Horitsu, K. Kawai, T. Suzuki, and K. Takamizawa. 1996. Production of xylitol from D-xylose by Candida tropicalis: the effect of D-glucose feeding. J. Ferment. Bioeng. 81, 148–152.

    Article  CAS  Google Scholar 

  • Yokoyama, S., T. Suzuki, K. Kawai, H. Horitsu, and K. Takamizawa. 1995a. Cloning and sequencing of two xylose reductase genes (xyrA and xyrB) from Candida tropicalis. J. Ferment. Bioeng. 80, 603–605.

    Article  CAS  Google Scholar 

  • Yokoyama, S., T. Suzuki, K. Kawai, H. Horitsu, and K. Takamizawa. 1995b. Purification, characterization and structure analysis of NADPH-dependent xylose reductases from Candida tropicalis. J. Ferment. Bioeng. 79, 217–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Qiao, D., Xu, H. et al. Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis . J Microbiol. 47, 351–357 (2009). https://doi.org/10.1007/s12275-008-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0225-9

Keywords

Navigation