Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli

Abstract

The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15–20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.

This is a preview of subscription content, access via your institution.

References

  1. Andersons, D. and A. Engstrom. 1991. Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody-binding part of protein A. Biochem. J. 280, 219–224.

    PubMed  CAS  Google Scholar 

  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248–254.

    PubMed  Article  CAS  Google Scholar 

  3. Bulet, P., M. Charlet, and C. Hetru. 2003. Innate Immunity, p. 89–107. In R.A.B. Ezekowitz and J.A. Hoffmann (eds.), Humana Press, Totowa, NJ, USA.

    Google Scholar 

  4. Bulet, P. and R. Stöcklin. 2005. Insect antimicrobial peptides: Structures, properties and gene regulation. Protein Pept. Lett. 12, 3–11.

    PubMed  Article  CAS  Google Scholar 

  5. Callaway, J.E., J. Lai, B. Haselbeck, M. Baltaian, S.P. Bonnesen, J. Weickmann, G. Wilcox, and S.P. Lei. 1993. Modification of the C-terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob. Agents Chemother. 37, 1614–1619.

    PubMed  CAS  Google Scholar 

  6. Dhople, V., A. Krukemeyer, and A. Ramamoorthy. 2006. The human betadefensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta 1758, 1499–1512.

    PubMed  Article  CAS  Google Scholar 

  7. Dürr, U.H., U.S. Sudheendra, and A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 1758, 1408–1425.

    PubMed  Article  Google Scholar 

  8. Hara, S., K. Taniai, Y. Kato, and M. Yamakawa. 1994. Isolation and a-amidation of the non-amidated form of cecropin D from larvae of Bombyx mori. Comp. Biochem. Physiol. B 108, 303–308.

    Article  Google Scholar 

  9. Hetru, C., J.A. Hoffmann, and R.E.W. Hancock. 2002. Peptide Antibiotics, p. 117–144. In C.J. Dutton, M.A. Haxell, H.I.I. McArthur, and R.G. Wax (eds.), Marcel Dekker Inc., New York and Basel.

    Google Scholar 

  10. Ingham, A.B. and R.J. Moore. 2007. Recombinant production of antimicrobial peptides in heterologous microbial systems. Bio-technol. Appl. Biochem. 47, 1–9.

    Article  CAS  Google Scholar 

  11. Jiang, X.Y., H.P. Chen, W.L. Yang, Y. Liu, W. Liu, J.W. Wei, H.B. Tu, X.J. Xie, L. Wang, and A.L. Xu. 2003. Functional expression and characterization of an acidic actinoporin from sea anemone Sagartia rosea. Biochem. Biophys. Res. Commun. 312, 562–570.

    PubMed  Article  CAS  Google Scholar 

  12. Kang, C.S., C.W. Park, and I.S. Bang. 2008. Production and purification of a cecropin family antibacterial peptide, Hinnavin II, in Escherichia coli. Biotechnol. Bioprocess Eng. 13, 377–382.

    Article  CAS  Google Scholar 

  13. Kim, J.M., S.A. Jang, B.J. Yu, B.H. Sung, J.H. Cho, and S.C. Kim. 2008. High-level expression of an antimicrobial peptide histonin as a natural form by multimerization and furin-mediated cleavage. Appl. Microbiol. Biotechnol. 78, 123–130.

    PubMed  Article  CAS  Google Scholar 

  14. Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    PubMed  Article  CAS  Google Scholar 

  15. LaVallie, E.R., E.A. DiBlasio, S. Kovacic, K.L. Grant, P.F. Schendel, and J.M. McCoy. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11, 187–193.

    PubMed  Article  CAS  Google Scholar 

  16. Lehrer, R.I., M. Rosenman, S.S.S.L. Harwig, R. Jackson, and P. Eisenhauer. 1991 Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167–173.

    PubMed  Article  CAS  Google Scholar 

  17. Li, Z.Q., R.B. Merrifield, I.A. Boman, and H.G. Boman. 1988. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett. 231, 299–302.

    PubMed  Article  CAS  Google Scholar 

  18. Liu, W.H., L. Wang, Y.L. Wang, L.S. Peng, W.Y. Wu, W.L. Peng, X.Y. Jiang, H.B. Tu, H.P. Chen, P.O. Yang, and A.L. Xu. 2003. Cloning and characterization of a novel neurotoxin from the sea anemone Anthopleura sp. Toxicon 41, 793–801.

    PubMed  Article  CAS  Google Scholar 

  19. Lowenberger, C., M. Charlet, J. Vizioli, S. Kamal, A. Richman, B.M. Christensen, and P. Bulet. 1999. Antimicrobial activity spectrum, cDNA cloning and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J. Biol. Chem. 274, 20092–20107.

    PubMed  Article  CAS  Google Scholar 

  20. Mor, A., K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269, 31635–31641.

    PubMed  CAS  Google Scholar 

  21. Nakajima, Y. and X. Qu. 1987. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Surcophugu peregrine. J. Biol. Chem. 262, 1665–1669.

    PubMed  CAS  Google Scholar 

  22. Schägger, H. and G. Von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    PubMed  Article  Google Scholar 

  23. Skosyrev, V.S., E.A. Kulesskiy, A.V. Yakhnim, Y.V. Temirov, and L.M. Vinokurov. 2003. Expression of the recombinant antibacterial peptide sarcotoxin IA in Eschericha coli cells. Protein Expr. Purif. 28, 350–356.

    PubMed  Article  CAS  Google Scholar 

  24. Steiner, H., D. Hultmark, A. Engström, H. Bennich, and H.G. Boman. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246–248.

    PubMed  Article  CAS  Google Scholar 

  25. Symersky, J., J. Novak, D.T. Mcpherson, L. Delucas, and J. Mestecky. 2000. Expression of the recombinant human immunoglobulin J chain in Escherichia coli. Mol. Immunol. 37, 133–140.

    PubMed  Article  CAS  Google Scholar 

  26. Tenno, T., N. Goda, Y. Tateishi, H. Tochio, M. Mishima, H. Hayashi, M. Shirakawa, and H. Hiroaki. 2004. Highthroughput construction, method for expression vector of peptides for NMR study suited for isotopic labeling. Protein Eng. Des. Sel. 174, 305–314.

    Article  Google Scholar 

  27. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.

    PubMed  Article  CAS  Google Scholar 

  28. Xu, X., F. Jin, X. Yu, S. Ji, J. Wang, H. Cheng, C. Wang, and W. Zhang. 2007. Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expr. Purif. 53, 293–301.

    PubMed  Article  CAS  Google Scholar 

  29. Yoe, S.M., C.S. Kang, S.S. Han, and I.S. Bang. 2006. Characterization and cDNA cloning of hinnavinII, a cecropin family antibacterial peptide from the cabbage butterfly, Artogeia rapae. Comp. Biochem. Physiol. B 144, 199–205.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to In Seok Bang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, C.S., Son, SY. & Bang, I.S. Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli . J Microbiol. 46, 656–661 (2008). https://doi.org/10.1007/s12275-008-0214-z

Download citation

Keywords

  • Artogeia rapae
  • C-amidated terminus
  • hinnavinII
  • antimicrobial peptide
  • recombinant protein expression
  • Escherichia coli