The Journal of Microbiology

, Volume 46, Issue 4, pp 396–401 | Cite as

Acinetobacter soli sp. nov., isolated from forest soil

  • Duwoon Kim
  • Keun Sik Baik
  • Mi Sun Kim
  • Seong Chan Park
  • Seon Suk Kim
  • Moon Soo Rhee
  • Young Se Kwak
  • Chi Nam SeongEmail author


A non-motile and rod shaped bacterium, designated strain B1T, was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C18:1 ω9c; 42%) and hexadecanoic acid (C16:0; 25.9%) and summed feature 3 (comprising iso-C15:0 2-OH and/or C16:1 ω7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1T formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961T (98.6% sequence similarity), followed by A. baumannii DSM 30007T (97.4%), A. calcoaceticus DSM 30006T (97.0%) and 3 genomic species (96.8∼7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1T from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1T (= KCTC 22184T= JCM 15062T).


Acinetobacter soli gyrB gene DNA-DNA relatedness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baik, K.S., Y.D. Park, C.N. Seong, E.M. Kim, K.S. Bae, and J. Chun. 2006. Glaciecola nitratireducens sp. nov. isolated from sea water. Int. J. Syst. Evol. Microbiol. 56, 2185–2188.PubMedCrossRefGoogle Scholar
  2. Bouvet, P.J.M. and P.A.D. Grimont. 1986. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36, 228–240.Google Scholar
  3. Bouvet, P.J.M. and S. Jeanjean. 1989. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res. Microbiol. 140, 291–299.PubMedCrossRefGoogle Scholar
  4. Carr, E.L., P. Kämpfer, B.K.C. Patel, V. Gürtler, and R.J. Seviour. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53, 953–963.PubMedCrossRefGoogle Scholar
  5. Chun, J., K.S. Bae, E.Y. Moon, S.O. Jung, H.K. Lee, and S.J. Kim. 2000. Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int. J. Syst. Evol. Microbiol. 50, 1909–1913.PubMedGoogle Scholar
  6. Chun, J. and M. Goodfellow. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240–245.PubMedGoogle Scholar
  7. Chun, J., J.H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.PubMedCrossRefGoogle Scholar
  8. CLSI. 2003. Performance standards for antimicrobial disk susceptibility tests, 8th ed. Approved Standard M2-A8, Clinical Laboratory Standards Institute, Wayne, PA, USA.Google Scholar
  9. Collins, M.D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.PubMedGoogle Scholar
  10. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  11. Fitch, W.M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155, 279–284.PubMedCrossRefGoogle Scholar
  12. Gerner-Smidt, P. and I. Tjernberg. 1993. Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101, 826–832.PubMedGoogle Scholar
  13. Gordon, R.E. and J.M. Mihm. 1962. Identification of Nocardia caviae (Erikson) nov. comb. Ann. N. Y. Acad. Sci. 98, 628–636.CrossRefGoogle Scholar
  14. Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21–132. In H.N. Munro (ed.), Mammalian protein metabolism. Academic Press. New York, N.Y., USA.Google Scholar
  15. Kovacs, N. 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703.PubMedCrossRefGoogle Scholar
  16. Marmur, J. and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5, 109–118.PubMedGoogle Scholar
  17. MIDI. 1999. Sherlock Microbial Identification System Operating Manual, version 3.0. MIDI Inc., Newark, DE, USA.Google Scholar
  18. Minnikin, D.E., A.G. O’Donnell, M. Goodfellow, G. Alderson, M. Athalye, A. Schaal, and J.H. Parlett. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  19. Nemec, A., T. De Baere, I. Tjernberg, M. Vaneechoutte, T.J.K. Van Der Reijden, and L. Dijkshoorn. 2001. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 51, 1891–1899.PubMedGoogle Scholar
  20. Nemec, A., L. Dijkshoorn, I. Cleenwerck, T. De Baere, D. Janssens, T.J.K. Van Der Reijden, P. Jezek, and M. Vaneechoutte. 2003. Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 53, 1563–1567.PubMedCrossRefGoogle Scholar
  21. Nishimura, Y., T. Ino, and H. Iizuka. 1988. Acinetobacter radioresistens sp. nov. isolated from cotton and soil. Int. J. Syst. Bacteriol. 38, 209–211.Google Scholar
  22. Richard, C. and M. Kiredjian. 1995. Laboratory Methods for the Identification of Strictly Aerobic Gram-negative Bacilli. Institut Pasteur, Paris, France.Google Scholar
  23. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  24. Seldin, L. and D. Dubnau. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol. 35, 151–154.Google Scholar
  25. Skerman, V.B.D. 1967. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Williams and Wilkins, Baltimore, USA.Google Scholar
  26. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization, p. 607–654. In P. Gerhardt, R.G.E. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C., USA.Google Scholar
  27. Swofford, D.L. 1998. Phylogenetic analysis using parsimony (PAUP). Version 4. Sinauer Associates, Suderland, MA, USA.Google Scholar
  28. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  29. Tjernberg, I. and J. Ursing. 1989. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97, 595–605.PubMedCrossRefGoogle Scholar
  30. Vaneechoutte, M., I. Tjernberg, F. Baldi, M. Pepi, R. Fani, E.R. Sullivan, J. Van Der Toorn, and L. Dijkshoorn. 1999. Oil-degrading Acinetobacter strain RAG-1 and strains described as ‘Acinetobacter venetianus sp. nov.’ belong to the same genomic species. Res. Microbiol. 150, 69–73.PubMedCrossRefGoogle Scholar
  31. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Trüper. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.CrossRefGoogle Scholar
  32. Yamamoto, S. and S. Harayama. 1995. PCR Amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61, 1104–1109.PubMedGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer-Verlag Berlin Heidelber GmbH 2008

Authors and Affiliations

  • Duwoon Kim
    • 1
  • Keun Sik Baik
    • 2
  • Mi Sun Kim
    • 2
  • Seong Chan Park
    • 2
  • Seon Suk Kim
    • 2
  • Moon Soo Rhee
    • 3
  • Young Se Kwak
    • 4
  • Chi Nam Seong
    • 2
    Email author
  1. 1.Division of Food Science and Aqualife MedicineChonnam National UniversityYeosuRepublic of Korea
  2. 2.Department of BiologySunchon National UniversitySuncheonRepublic of Korea
  3. 3.Korean Collection for Type CulturesKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  4. 4.Environment & Energy Research CenterResearch Institute of Industrial Science & Technology (RIST)GwangyangRepublic of Korea

Personalised recommendations