Skip to main content
Log in

Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Succession of bacterial communities during the first 36 h of biofilm formation in coastal water was investigated at 3∼15 h intervals. Three kinds of surfaces (i.e., acryl, glass, and steel substratum) were submerged in situ at Sacheon harbor, Korea. Biofilms were harvested by scraping the surfaces, and the compositions of bacterial communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of 16S rRNA genes. While community structure based on T-RFLP analysis showed slight differences by substratum, dramatic changes were commonly observed for all substrata between 9 and 24 h. Identification of major populations by 16S rRNA gene sequences indicated that γ-Proteobacteria (Pseudomonas, Acinetobacter, Alteromonas, and uncultured γ-Proteobacteria) were predominant in the community during 0∼9 h, while the ratio of α-Proteobacteria (Loktanella, Methylobacterium, Pelagibacter, and uncultured α-Proteobacteria) increased 2.6∼4.8 folds during 24∼36 h of the biofilm formation, emerging as the most predominant group. Previously, α-Proteobacteria were recognized as the pioneering organisms in marine biofilm formation. However, results of this study, which revealed the bacterial succession with finer temporal resolution, indicated some species of γ-Proteobacteria were more important as the pioneering population. Measures to control pioneering activities of these species can be useful in prevention of marine biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Cerca, N., G.B. Pier, M. Vilanova, R. Oliveira, and J. Azeredo. 2005. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156, 506–514.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, L.D., K.R. Stokes, F.C. Walsh, and R.J.K. Wood. 2006. Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 201, 3642–3652.

    Article  CAS  Google Scholar 

  • Costerton J.W., P.S. Stewart, and E.P. Greenberg. 1999. Bacterial Biofilms: A common cause of persistent infections. Science 284, 1318–1322.

    Article  PubMed  CAS  Google Scholar 

  • Dang, H., T. Li, M. Chen, and G. Huang. 2008. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 74, 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Dang, H. and C.R. Lovell. 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Dang, H. and C.R. Lovell. 2002. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl. Environ. Microbiol. 68, 496–504.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Felsenstein, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. University of Washington, Seattle, Washington, D.C., USA.

    Google Scholar 

  • Jefferson, K.K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236, 163–173.

    PubMed  CAS  Google Scholar 

  • Jones, P.R., M.T. Cottrell, D.L. Kirchman, and S.C. Dexter. 2007. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb. Ecol. 53, 153–162.

    Article  PubMed  Google Scholar 

  • Jukes, T.H. and C.R. Cantor. 1969. Evolution of protein molecules, p. 21–132. In H.N. Munro (ed.), Mammalian protein metabolism. Academic Press, New York, N.Y., USA.

    Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115–175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, UK.

    Google Scholar 

  • Lee, H.S., K.K. Kwon, J.H. Lee, and H.K. Lee. 1999. Optimal protocol for enumeration of attached bacteria on glass slides. J. Microbiol. 37, 263–266.

    Google Scholar 

  • Lee, Y.K., K.K. Kwon, K.H. Cho, H.W. Kim, J.H. Park, and H.K. Lee. 2003. Culture and identification of bacteria from marine biofilms. J. Microbiol. 41, 183–188.

    CAS  Google Scholar 

  • Lyautey, E., C.R. Jackson, J. Cayrou, J.L. Rols, and F. Garabetian. 2005. Bacterial community succession in natural river biofilm assemblages. Microb. Ecol. 50, 589–601.

    Article  PubMed  Google Scholar 

  • Martiny, A.C., T.M. Jorgensen, H.J. Albrechtsen, E. Arvin, and S. Molin. 2003. Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69, 6899–6907.

    Article  PubMed  CAS  Google Scholar 

  • McLean, R.J.C., M.B. Barnes, M.K. Windham, M. Merchant, M.R.J. Forstner, and C. Fuqua. 2005. Cell-cell influences on bacterial community development in aquatic biofilms. Appl. Environ. Microbiol. 71, 8987–8990.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D.N., J.E. Bryant, E.L. Madsen, and W.C. Ghiorse, 1999. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65, 4715–4724.

    PubMed  CAS  Google Scholar 

  • Rochelle, P.A., J.C. Fry, R.J. Parkes, and A.J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 79, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook, J. and D.W. Russell. 2001. Molecular cloning, 3rd ed., Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Siboni, N., M. Lidor, E. Kramarsky-Winter, and A. Kushmaro. 2007. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiol. Lett. 274, 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, I., S. Takahashi, S. Tanabe, and N. Miyazaki. 2004. Butyltin concentrations along the Japanese coast from 1997 to 1999 monitored by Caprella spp. (Crustacea: Amphipoda). Mar. Environ. Res. 57, 397–414.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 24, 4876–4882.

    Article  Google Scholar 

  • Webster, N.S. and A.P. Negri. 2006. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ. Microbiol. 8, 1177–1190.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW., Nam, JH., Kim, YH. et al. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol. 46, 174–182 (2008). https://doi.org/10.1007/s12275-008-0032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0032-3

Keywords

Navigation