Skip to main content
Log in

Integrating single Ni site and PtNi alloy on two-dimensional porous carbon nanosheet for efficient catalysis in fuel cell

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The performance of catalyst depends on the intrinsic activity of active sites and the structural characteristics of the support. Here, we simultaneously integrate single nickel (Ni) sites and platinum-nickel (PtNi) alloy nanoparticles (NPs) on a two-dimensional (2D) porous carbon nanosheet, demonstrating remarkable catalytic performance in the oxygen reduction reaction (ORR). The single Ni sites can activate the oxygen molecules into key oxygen-containing intermediate that is further efficiently transferred to the adjacent PtNi alloy NPs and rapidly reduced to H2O, which establishes a relay catalysis between active sites. The porous structure on the carbon nanosheet support promotes the transfer of active intermediates between these active sites, which assists the relay catalysis by improving mass diffusion. Remarkably, the obtained catalyst demonstrates a half-wave potential of up to 0.942 V, a high mass activity of 0.54 A·mgPt−1, and negligible decay of activity after 30,000 cycles, which are all superior to the commercial Pt/C catalysts with comparable loading of Pt. The theoretical calculation results reveal that the obtained catalyst with defect structure of carbon support presents enhanced relay catalytic effect of PtNi alloy NPs and single Ni sites, ultimately realizing improved catalytic performance. This work provides valuable inspiration for developing low platinum loading catalyst, integrating single atoms and alloy with outstanding performance in fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. J.; Long, W. Y.; Wang, L. L.; Yuan, R.; Ignaszak, A.; Fang, B. Z.; Wilkinson, D. P. Unlocking the door to highly active ORR catalysts for PEMFC applications: Polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 2018, 11, 258–275.

    Article  CAS  Google Scholar 

  2. Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

    Article  CAS  PubMed  Google Scholar 

  3. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  PubMed  Google Scholar 

  4. Ali, A.; Laaksonen, A.; Huang, G.; Hussain, S.; Luo, S. P.; Chen, W.; Shen, P. K.; Zhu, J. L.; Ji, X. Y. Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts. Nano Res. 2024, 17, 3516–3532.

    Article  CAS  Google Scholar 

  5. Qiao, Z.; Wang, C. Y.; Li, C. Z.; Zeng, Y. C.; Hwang, S.; Li, B. Y.; Karakalos, S.; Park, J.; Kropf, A. J.; Wegener, E. C. et al. Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: Performance and durability improvements. Energy Environ. Sci. 2021, 14, 4948–4960.

    Article  CAS  Google Scholar 

  6. Huang, J.; Sementa, L.; Liu, Z. Y.; Barcaro, G.; Feng, M.; Liu, E. S.; Jiao, L.; Xu, M. J.; Leshchev, D.; Lee, S. J. et al. Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nat. Catal. 2022, 5, 513–523.

    Article  Google Scholar 

  7. Lv, Y. P.; Lin, L. L.; Xue, R. X.; Zhang, P. F.; Ma, F. Y.; Gan, T.; Zhang, J. W.; Gao, D. W.; Zheng, X. B.; Wang, L. G. et al. Electronegativity induced d-band center offset for Pt-Rh dual sites in high-entropy alloy boosts liquid fuels electrooxidation. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202304515.

  8. Sun, Y. Y.; Han, L.; Strasser, P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 2020, 49, 6605–6631.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, S. Y.; Luo, T.; Li, X. Q.; Chen, K. J.; Fu, J. W.; Liu, K.; Cai, C.; Wang, Q. Y.; Li, H. M.; Chen, Y. et al. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 2022, 144, 14505–14516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shao, Y. Y.; Dodelet, J. P.; Wu, G.; Zelenay, P. PGM-free cathode catalysts for PEM fuel cells: A mini-review on stability challenges. Adv. Mater. 2019, 31, 1807615.

    Article  Google Scholar 

  11. Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497–1506.

    Article  CAS  Google Scholar 

  12. Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Size-controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 2016, 12, 3189–3196.

    Article  CAS  PubMed  Google Scholar 

  13. Kaiser, S. K.; Fako, E.; Manzocchi, G.; Krumeich, F.; Hauert, R.; Clark, A. H.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020, 3, 376–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, W. X.; Gao, X. P.; Zhu, M. Z.; Xu, C. X.; Zhu, X. R.; Zhao, X. Y.; Sun, R. B.; Xue, Z. G.; Song, J.; Tian, L. et al. A closely packed Pt1.5Ni1−x/Ni-N-C hybrid for relay catalysis towards oxygen reduction. Energy Environ. Sci. 2023, 16, 148–156.

    Article  CAS  Google Scholar 

  16. Jiang, F.; Li, Y. C.; Pan, Y. Design principles of single-atom catalysts for oxygen evolution reaction: From targeted structures to active sites. Adv. Mater. 2024, 36, 2306309.

    Article  CAS  Google Scholar 

  17. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

    Article  CAS  Google Scholar 

  18. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem., Int. Ed. 2023, 62, e202303185.

    Article  CAS  Google Scholar 

  19. Chen, R. Z.; Chen, S. H.; Wang, L. Q.; Wang, D. S. Nanoscale metal particle modified single-atom catalyst: Synthesis, characterization, and application. Adv. Mater. 2024, 36, 2304713.

    Article  CAS  Google Scholar 

  20. Qi, J. L.; Wang, W. B.; Li, Y. H.; Sun, Y. M.; Wu, Z. X.; Bao, K.; Wang, L. Z.; Ye, R. Q.; Ding, M. N.; He, Q. Y. On-chip investigation of electrocatalytic oxygen reduction reaction of 2D materials. Small 2022, 18, 2204010.

    Article  CAS  Google Scholar 

  21. Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macrostructures of two-dimensional nanomaterials. Chem. Soc. Rev. 2016, 45, 5541–5588.

    Article  CAS  PubMed  Google Scholar 

  22. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, C. X.; Yang, J. R.; Zhang, J. W.; Wang, X. Q.; Gao, Y.; Wang, D. S.; Pan, H. G. Single-atom materials: The application in energy conversion. Interdisciplinary Materials 2024, 3, 74–86.

    Article  CAS  Google Scholar 

  24. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  25. Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, 2308653.

    Article  CAS  Google Scholar 

  26. Peng, Y.; Zhu, L. J.; Li, C. Y.; Hu, J. Y.; Lu, Y.; Fu, J. T.; Cui, F. F.; Wang, X. Z.; Cao, A. Y.; Ji, Q. Q. et al. Highly stable vertically oriented 2H-NbS2 nanosheets on carbon nanotube films toward superior electrocatalytic activity. Adv. Energy Mater. 2024, 14, 2302510.

    Article  CAS  Google Scholar 

  27. Lin, Y. F.; Wan, H.; Wu, D.; Chen, G.; Zhang, N.; Liu, X. H.; Li, J. H.; Cao, Y. J.; Qiu, G. Z.; Ma, R. Z. Metal- organic framework hexagonal nanoplates: Bottom-up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7317–7321.

    Article  CAS  PubMed  Google Scholar 

  28. Mezzavilla, S.; Baldizzone, C.; Swertz, A. C.; Hodnik, N.; Pizzutilo, E.; Polymeros, G.; Keeley, G. P.; Knossalla, J.; Heggen, M.; Mayrhofer, K. J. J. et al. Structure-activity-stability relationships for space-confined PtxNiy nanoparticles in the oxygen reduction reaction. ACS Catal. 2016, 6, 8058–8068.

    Article  CAS  Google Scholar 

  29. Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Article  CAS  Google Scholar 

  30. Xu, J. S.; Li, R.; Yan, X. Y.; Zhao, Q. K.; Zeng, R. G.; Ba, J. W.; Pan, Q. F.; Xiang, X.; Meng, D. Q. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 2022, 15, 3952–3958.

    Article  CAS  Google Scholar 

  31. Peng, X.; Zhao, S.; Omasta, T. J.; Roller, J. M.; Mustain, W. E. Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. Appl. Catal. B: Environ. 2017, 203, 927–935.

    Article  CAS  Google Scholar 

  32. Lee, S.; Jang, J. H.; Jang, I.; Choi, D.; Lee, K. S.; Ahn, D.; Kang, Y. S.; Park, H. Y.; Yoo, S. J. Development of robust Pt shell through organic hydride donor in PtCo@Pt core–shell electrocatalysts for highly stable proton exchange membrane fuel cells. J. Catal. 2019, 379, 112–120.

    Article  CAS  Google Scholar 

  33. Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G. et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem., Int. Ed. 2019, 58, 15471–15477.

    Article  CAS  Google Scholar 

  34. Cheng, H.; Liu, S.; Hao, Z. K.; Wang, J. Y.; Liu, B. J.; Liu, G. Y.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chem. Sci. 2019, 10, 5589–5595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

    Article  CAS  Google Scholar 

  36. Zhu, Y. M.; Peng, J. H.; Zhu, X. R.; Bu, L. Z.; Shao, Q.; Pao, C. W.; Hu, Z. W.; Li, Y. F.; Wu, J. B.; Huang, X. Q. A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 2021, 21, 6625–6632.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng, H.; Gui, R. J.; Yu, H.; Wang, C.; Liu, S.; Liu, H. F.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S. et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2104026118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1501003), the National Natural Science Foundation of China (Nos. 92261105 and 22221003), the Anhui Provincial Natural Science Foundation (Nos. 2108085UD06 and 2208085UD04), the Anhui Provincial Key Research and Development Project (Nos. 2023z04020010 and 2022a05020053), the Collaborative Innovation Program of Hefei Science Center, CAS (No. 2021HSC-CIP002), the Joint Funds from Hefei National Synchrotron Radiation Laboratory (Nos. KY2060000180 and KY2060000195), and the Yanchang foundation (No. KD2203220074). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank the funding support from CAS Fujian Institute of Innovation. We acknowledge the Experimental Center of Engineering and Material Science in the University of Science and Technology of China. We thank the photoemission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), and BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huang Zhou or Yuen Wu.

Electronic supplementary material

12274_2024_6692_MOESM1_ESM.pdf

Integrating single Ni site and PtNi alloy on two-dimensional porous carbon nanosheet for efficient catalysis in fuel cell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Ruan, Y., Li, F. et al. Integrating single Ni site and PtNi alloy on two-dimensional porous carbon nanosheet for efficient catalysis in fuel cell. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6692-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6692-4

Keywords

Navigation