Skip to main content
Log in

Spherical cationic polymer networks with porphyrin photosensitizer for sustainable and efficient photocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The continuous and sustainable photo-activity on micro- or nano-carriers has always been a key stepping stone in the industrialization of photo-catalysis, photo-synthesis, and photo-degradation. Herein, we report a new series of positively charged hollow microspheres carrying porphyrin moieties. Such hollow spheres are formed through crosslinking of well-ordered porous thin laminates, initiated by co-assembly of regular monomers and those decorated with porphyrin moieties. On the surface of an individual sphere, densely distributed positive sites attract anionic reactants. The superficial porphyrin decomposes the accumulated reactants under 1 Sun. After degradation and release of products, the photoactive sites are thereby renewed. We demonstrate that polymer network (1:10) exhibited superior sustainable photocatalytic performance with complete degradation of methyl orange (MO) in 40 min with no observable performance deterioration after six cycles. The established close loop of adsorption–reaction–release cycle makes possible many efficient and continuous photo-catalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H. M. N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66.

    Article  CAS  PubMed  Google Scholar 

  2. Afshari, M.; Dinari, M. Synthesis of new imine-linked covalent organic framework as high efficient absorbent and monitoring the removal of direct fast scarlet 4BS textile dye based on mobile phone colorimetric platform. J. Hazard. Mater. 2020, 385, 121514.

    Article  CAS  PubMed  Google Scholar 

  3. Xu, X. H.; Li, Y. X.; Zhou, L.; Liu, N.; Wu, Z. Q. Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: From structural regulation to efficient iodine capture. Chem. Sci. 2022, 13, 1111–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, X. M.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Peng, W. C. Kioto-accelerated Co3+/Co2+ transformation on cobalt and phosphorus co-doped g-C3N4 for Fenton-like reaction. J. Mater. Chem. A 2021, 9, 22399–22409.

    Article  CAS  Google Scholar 

  5. Wang, Y. L.; Gao, Y.; Ye, T. R.; Hu, Y. Y.; Yang, C. M. Dynamic variations of dissolved organic matter from treated wastewater effluent in the receiving water: Photo- and bio-degradation kinetics and its environmental implications. Environ. Res. 2021, 194, 110709.

    Article  CAS  PubMed  Google Scholar 

  6. Fan, Y. J.; Kang, D. W.; Labalme, S.; Li, J. H.; Lin, W. B. Enhanced energy transfer in a π-conjugated covalent organic framework facilitates excited-state nickel catalysis. Angew. Chem., Int. Ed. 2023, 62, e202218908.

    Article  CAS  Google Scholar 

  7. Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019, 9, 345–364.

    Article  CAS  PubMed  Google Scholar 

  8. Venkatesh, N.; Murugadoss, G.; Mohamed, A. A. A.; Kumar, M. R.; Peera, S. G.; Sakthivel, P. A novel nanocomposite based on triazine based covalent organic polymer blended with porous g-C3N4 for photo catalytic dye degradation of rose bengal and fast green. Molecules 2022, 27, 7168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie, P. F.; Ding, J.; Yao, Z. H.; Pu, T. C.; Zhang, P.; Huang, Z. N.; Wang, C. H.; Zhang, J. L.; Zecher-Freeman, N.; Zong, H. et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 2022, 13, 1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, S. L.; Lv, H. W.; Zhong, H.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202115655.

    Article  CAS  Google Scholar 

  11. Ma, Y. J.; Yi, X. X.; Wang, S. L.; Li, T.; Tan, B.; Chen, C. C.; Majima, T.; Waclawik, E. R.; Zhu, H. Y.; Wang, J. Y. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2. Nat. Commun. 2022, 13, 1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, S. L.; Xu, M.; Peng, T. Y.; Zhang, C. X.; Li, T.; Hussain, I.; Wang, J. Y.; Tan, B. E. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Atilgan, A.; Cetin, M. M.; Yu, J. R.; Beldjoudi, Y.; Liu, J.; Stern, C. L.; Cetin, F. M.; Islamoglu, T.; Farha, O. K.; Deria, P. et al. Post-synthetically elaborated BODIPY-based porous organic polymers (POPs) for the photochemical detoxification of a sulfur mustard simulant. J. Am. Chem. Soc. 2020, 142, 18554–18564.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

    Article  CAS  Google Scholar 

  15. Chen, R. F.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X. Y.; Gao, L.; Qiao, L. J.; Li, X. B.; Wu, L. Z.; Wang, C. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, M.; Zhang, S. B.; Yang, M. Y.; Liu, Y. F.; Liao, J. P.; Huang, P.; Zhang, M.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Dual photosensitizer coupled three-dimensional metal-covalent organic frameworks for efficient photocatalytic reactions. Angew. Chem., Int. Ed. 2023, 62, e202307632.

    Article  Google Scholar 

  17. Xu, W. J.; Huang, B. X.; Li, G. L.; Yang, F.; Lin, W.; Gu, J. X.; Deng, H. G.; Gu, Z. G.; Jin, H. G. Donor-acceptor mixed-naphthalene diimide-porphyrin MOF for boosting photocatalytic oxidative coupling of amines. ACS Catal. 2023, 13, 5723–5732.

    Article  CAS  Google Scholar 

  18. Liu, X. Y.; Yang, Y. Y.; Chen, M.; Xu, W.; Chen, K. C.; Luo, R. C. High-surface-area metalloporphyrin-based porous ionic polymers by the direct condensation strategy for enhanced CO2 capture and catalytic conversion into cyclic carbonates. ACS Appl. Mater. Interfaces 2023, 15, 1085–1096.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, T.; Xing, G. L.; Chen, W. B.; Chen, L. Porous organic polymers: A promising platform for efficient photocatalysis. Mater. Chem. Front. 2020, 4, 332–353.

    Article  CAS  Google Scholar 

  20. Palmans, A. R. A.; Vekemans, J. A. J. M.; Meijer, E. W.; Palmans, A. R. A.; Kooijman, H.; Spek, A. L. Hydrogen-bonded porous solid derived from trimesic amide. Chem. Commun. 1997, 2247–2248.

  21. Liu, C. Z.; Koppireddi, S.; Wang, H.; Zhang, D. W.; Li, Z. T. Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers. Angew. Chem., Int. Ed. 2019, 58, 226–230.

    Article  CAS  Google Scholar 

  22. Robertson, C. C.; Wright, J. S.; Carrington, E. J.; Perutz, R. N.; Hunter, C. A.; Brammer, L. Hydrogen bonding vs halogen bonding: The solvent decides.. Chem. Sci. 2017, 8, 5392–5398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, Y. J.; Yang, Y. T.; Xu, R.; Liang, M. Y.; Mou, Q.; Chen, S. X.; Kim, J.; Jin, L. Y.; Lee, M.; Huang, Z. G. Hierarchical porous photosensitizers with efficient photooxidation. Nat. Commun. 2023, 14, 2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, L. L.; Huang, L. P.; Wu, S. S.; Xu, X.; Bao, J. H.; Shen, B. W.; Zhang, L. W.; Hou, Y.; Jin, L. Y.; Chen, T. et al. Two-dimensional cationic networks and their spherical curvature with tunable opening-closing. Nano Lett. 2019, 19, 9131–9137.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y. G.; Wu, S. S.; Zhang, L. L.; Xu, X.; Fang, Y. J.; Yi, J. Z.; Kim, J.; Shen, B. W.; Lee, M.; Huang, L. P. et al. Precisely controlled multidimensional covalent frameworks: Polymerization of supramolecular colloids. Angew. Chem., Int. Ed. 2020, 59, 21525–21529.

    Article  CAS  Google Scholar 

  26. Di Natale, C.; Gros, C. P.; Paolesse, R. Corroles at work: A small macrocycle for great applications. Chem. Soc. Rev. 2022, 51, 1277–1335.

    Article  CAS  PubMed  Google Scholar 

  27. Weyandt, E.; Leanza, L.; Capelli, R.; Pavan, G. M.; Vantomme, G.; Meijer, E. W. Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat. Commun. 2022, 13, 248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, J. H.; Guan, X. Y.; Lv, J.; Chen, X. H.; Zhang, Y.; Li, H.; Zhang, D. L.; Qiu, S. L.; Jiang, H. L.; Fang, Q. R. Theee-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J. Am. Chem. Soc. 2023, 145, 3248–3254.

    Article  CAS  PubMed  Google Scholar 

  29. Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y. M.; Nam, W. Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nat. Chem. 2011, 3, 38–41.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y. H.; Jeon, J. P.; Kim, Y.; Noh, H. J.; Seo, J. M.; Kim, J.; Lee, G.; Baek, J. B. Cobalt-porphyrin-based covalent organic frameworks with donor-acceptor units as photocatalysts for carbon dioxide reduction. Angew. Chem., Int. Ed. 2023, 62, e202307991.

    Article  CAS  Google Scholar 

  31. Liu, X. X.; Qi, R. L.; Li, S. M.; Liu, W. R.; Yu, Y. Y.; Wang, J. H.; Wu, S. M.; Ding, K. J.; Yu, Y. Triazine-porphyrin-based hyperconjugated covalent organic framework for high-performance photocatalysis. J. Am. Chem. Soc. 2022, 144, 23396–23404.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong, J. L.; Jia, X. J.; Liu, H. J.; Luo, X. Z.; Hong, S. G.; Zhang, N.; Huang, J. B. Self-assembled metallogels formed from N, N’, N” tris(4-pyridyl)trimesic amide in aqueous solution induced by Fe(iii)/Fe(ii) ions. Soft Matter 2016, 12, 191–199.

    Article  CAS  PubMed  Google Scholar 

  33. Wen, B.; Xue, J. Q.; Zhou, X. J.; Wu, Q. W.; Nie, J. J.; Xu, J. T.; Du, B. Y. Highly selective and sensitive detection of Pb2+ in aqueous solution using tetra(4-pyridyl)porphyrin-functionalized thermosensitive ionic microgels. ACS Appl. Mater. Interfaces 2018, 10, 25706–25716.

    Article  CAS  PubMed  Google Scholar 

  34. Jayakumar, S.; Li, H.; Chen, J.; Yang, Q. H. Cationic Zn-porphyrin polymer coated onto CNTs as a cooperative catalyst for the synthesis of cyclic carbonates. ACS Appl. Mater. Interfaces 2018, 10, 2546–2555.

    Article  CAS  PubMed  Google Scholar 

  35. Shi, N. E.; Dong, H.; Yin, G.; Xu, Z.; Li, S. H. A smart supramolecular hydrogel exhibiting pH-modulated viscoelastic properties. Adv. Funct. Mater. 2007, 17, 1837–1843.

    Article  CAS  Google Scholar 

  36. Das, G.; Skorjanc, T.; Sharma, S. K.; Gandara, F.; Lusi, M.; Rao, D. S. S.; Vimala, S.; Prasad, S. K.; Raya, J.; Han, D. S. et al. Viologen-based conjugated covalent organic networks via zincke reaction. J. Am. Chem. Soc. 2017, 139, 9558–9565.

    Article  CAS  PubMed  Google Scholar 

  37. Wen, J. T.; Wang, G.; Hao, P. C.; Li, X.; Liu, W. Y.; Chen, X. Y.; Zhan, H. J.; Li, F. Nongraphitic carbon nitride melem oligomer nanosheets for photocatalytic degradation of organic pollutants. ACS Appl. Nano Mater. 2022, 5, 13659–13670.

    Article  CAS  Google Scholar 

  38. Shi, C. C., Zhao, Z. X.; Zhao, L.; Kushwaha, A.; Kumar, A.; Wang, J.; Pan, Y.; Muddassir, M.; Lan, Q. Porphyrin-based Fe/La metal-organic frameworks as photocatalysts for dye photodegradation: Syntheses and mechanism investigation. Inorg. Chem. Commun. 2023, 154, 110920.

    Article  CAS  Google Scholar 

  39. Bao, L. L.; Li, Y.; Xi, Z.; Wang, X. Y.; Afzal, M.; Alarifi, A.; Srivastava, D.; Prakash, O.; Kumar, A.; Jin, J. C. A new 2D Zn(II)-based coordination polymer as photocatalyst for photodegradation of methyl orange in water: Effect of photocatalyst dosage and dye concentration. J. Mol. Struct. 2023, 1292, 136103.

    Article  CAS  Google Scholar 

  40. He, S. J.; Yin, B.; Niu, H. Y.; Cai, Y. Q. Targeted synthesis of visible-light-driven covalent organic framework photocatalyst via molecular design and precise construction. Appl. Catal. B: Environ. 2018, 239, 147–153.

    Article  CAS  Google Scholar 

  41. Yang, Y. L.; Niu, H. Y.; Xu, L.; Zhang, H.; Cai, Y. Q. Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Appl. Catal. B: Environ. 2020, 269, 118799.

    Article  CAS  Google Scholar 

  42. Li, S. X.; Geng, Y. K.; Teng, B.; Xu, S. Q.; Petkov, P. S.; Liao, Z. Q.; Jost, B.; Liu, Y.; Feng, X. L.; Wu, B. Z. et al. Nature-inspired pyrylium cation-based vinylene-linked two-dimensional covalent organic framework for efficient sunlight-driven water purification. Chem. Mater. 2023, 34, 1594–1600.

    Article  CAS  Google Scholar 

  43. Wang, W. W.; Pan, X. T.; Yang, H. L.; Wang, H.; Wu, Q. Y.; Zheng, L. R.; Xu, B. L.; Wang, J. H.; Shi, X. H.; Bai, F. et al. Bioactive metal-organic frameworks with specific metal-nitrogen (M-N) active sites for efficient sonodynamic tumor therapy. ACS Nano 2021, 15, 20003–20012.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y.; Lin, Y.; He, S. Y.; Wu, S. H.; Yang, C. P. Singlet oxygen: Properties, generation, detection, and environmental applications. J. Hazard. Mater. 2024, 461, 132538.

    Article  CAS  PubMed  Google Scholar 

  45. Liu, S. H.; Xia, S. Y.; Wang, J. F.; Ren, X. T.; Chen, S. D.; Zhong, Y.; Bai, F. Synthesis of the ZnTPyP/WO3 nnnoood-on-nnnoood heterojunction direct Z-scheme with spatial charge separation ability for enhanced photocatalytic hydrogen generation. Nanoscale 2023, 15, 2871–2881.

    Article  CAS  PubMed  Google Scholar 

  46. Chen, W. B.; Yang, Z. F.; Xie, Z.; Li, Y. S.; Yu, X.; Lu, F. L.; Chen, L. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium(VI). J. Mater. Chem. A 2019, 7, 998–1004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22172045, U23A20122, 21905076, and 21905077), the Key Science Foundation Project of Henan Province (No. 232300421146), and the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 22B150001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Bai, Jie Ju or Xi Yao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, L., Bao, J. et al. Spherical cationic polymer networks with porphyrin photosensitizer for sustainable and efficient photocatalysis. Nano Res. 17, 3934–3941 (2024). https://doi.org/10.1007/s12274-023-6395-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6395-2

Keywords

Navigation