Skip to main content
Log in

Enhanced sampling in molecular dynamics simulations and their latest applications—A review

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations are capable of reproducing dynamic evolution at the molecular scale, but are limited by temporal scales. Enhanced sampling has emerged as a powerful tool to improve sampling efficiency, thereby extending the simulation timescales of a range of simulation studies in materials, chemistry, biology, nanoscience, and related fields. Here, we provide a systematic overview of established enhanced sampling methods and clarify the principles and interconnections between these methods. Furthermore, we categorically elaborate on the state-of-the-art applications of enhanced sampling in the last five years. Through these exemplified applications, we discuss the unique advantages of this technique, showing the prospects and challenges for its future development. This review could help researchers in different fields gain a comprehensive understanding of the enhanced sampling technique, and jointly facilitate its application and advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolhuis, P. G. Two-state protein folding kinetics through all-atom molecular dynamics based sampling. Front. Biosci. 2009, 14, 2801–2828.

    CAS  Google Scholar 

  2. Dill, K. A.; MacCallum, J. L. The protein-folding problem, 50 years on. Science 2012, 338, 1042–1046.

    CAS  Google Scholar 

  3. Dyson, H. J.; Wright, P. E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 2002, 12, 54–60.

    CAS  Google Scholar 

  4. Englander, S. W.; Mayne, L. The nature of protein folding pathways. Proc. Natl. Acad. Sci. USA 2014, 111, 15873–15880.

    CAS  Google Scholar 

  5. Finkelstein, A. V.; Galzitskaya, O. V. Physics of protein folding. Phys. Life Rev. 2004, 1, 23–56.

    Google Scholar 

  6. Freddolino, P. L.; Harrison, C. B.; Liu, Y. X.; Schulten, K. Challenges in protein-folding simulations. Nat. Phys. 2010, 6, 751–758.

    CAS  Google Scholar 

  7. Levitt, M.; Warshel, A. Computer simulation of protein folding. Nature 1975, 253, 694–698.

    CAS  Google Scholar 

  8. Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How fast-folding proteins fold. Science 2011, 334, 517–520.

    CAS  Google Scholar 

  9. Pan, A. C.; Jacobson, D.; Yatsenko, K.; Sritharan, D.; Weinreich, T. M.; Shaw, D. E. Atomic-level characterization of protein-protein association. Proc. Natl. Acad. Sci. USA 2019, 116, 4244–4249.

    CAS  Google Scholar 

  10. Piana, S.; Lindorff-Larsen, K.; Shaw, D. E. Protein folding kinetics and thermodynamics from atomistic simulation. Proc. Natl. Acad. Sci. USA 2012, 109, 17845–17850.

    CAS  Google Scholar 

  11. Sztain, T.; Ahn, S. H.; Bogetti, A. T.; Casalino, L.; Goldsmith, J. A.; Seitz, E.; McCool, R. S.; Kearns, F. L.; Acosta-Reyes, F.; Maji, S. et al. A glycan gate controls opening of the SARS-CoV-2 spike protein. Nat. Chem. 2021, 13, 963–968.

    CAS  Google Scholar 

  12. Gershenson, A.; Gosavi, S.; Faccioli, P.; Wintrode, P. L. Successes and challenges in simulating the folding of large proteins. J. Biol. Chem. 2020, 295, 15–33.

    CAS  Google Scholar 

  13. Berendsen, H. J. C. Molecular dynamics simulations: The limits and beyond. In Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, Germany, 1999, pp 3–36.

  14. Cheatham III, T. E.; Young, M. A. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers 2000, 56, 232–256.

    CAS  Google Scholar 

  15. Shaw, D. E.; Adams, P. J.; Azaria, A.; Bank, J. A.; Batson, B.; Bell, A.; Bergdorf, M.; Bhatt, J.; Butts, J. A.; Correia, T. et al. Anton 3: Twenty microseconds of molecular dynamics simulation before lunch. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, USA, 2021, pp 1–11.

  16. Tiwary, P.; van de Walle, A. A review of enhanced sampling approaches for accelerated molecular dynamics. In Multiscale Materials Modeling for Nanomechanics. Weinberger, C. R.; Tucker, G. J., Eds.; Springer: Cham, 2016; pp 195–221.

    Google Scholar 

  17. Chen, M. Collective variable-based enhanced sampling and machine learning. Eur. Phys. J. B 2021, 94, 211.

    CAS  Google Scholar 

  18. Darve, E.; Ryu, E. Computing reaction rates in bio-molecular systems using discrete macro-states. 2013, arXiv: 1307.0763, e-Print archive. https://arxiv.org/abs/1307.0763 (accessed Jul 2, 2013).

  19. Abrams, C.; Bussi, G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 2013, 16, 163–199.

    Google Scholar 

  20. Yang, Y. I.; Shao, Q.; Zhang, J.; Yang, L. J.; Gao, Y. Q. Enhanced sampling in molecular dynamics. J. Chem. Phys. 2019, 151, 070902.

    Google Scholar 

  21. Bernardi, R. C.; Melo, M. C. R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta - Gen. Subj. 2015, 1850, 872–877.

    CAS  Google Scholar 

  22. Hénin, J.; Lelièvre, T.; Shirts, M. R.; Valsson, O.; Delemotte, L. Enhanced sampling methods for molecular dynamics simulations [Article v1.0]. Living J. Comput. Mol. Sci. 2022, 4, 1583.

    Google Scholar 

  23. Fujisaki, H.; Moritsugu, K.; Matsunaga, Y.; Morishita, T.; Maragliano, L. Extended phase-space methods for enhanced sampling in molecular simulations: A review. Front. Bioeng. Biotechnol. 2015, 3, 125.

    Google Scholar 

  24. Bertazzo, M.; Gobbo, D.; Decherchi, S.; Cavalli, A. Machine learning and enhanced sampling simulations for computing the potential of mean force and standard binding free energy. J. Chem. Theory Comput. 2021, 17, 5287–5300.

    CAS  Google Scholar 

  25. Invernizzi, M.; Piaggi, P. M.; Parrinello, M. Unified approach to enhanced sampling. Phys. Rev. X 2020, 10, 041034.

    CAS  Google Scholar 

  26. Higo, J.; Dasgupta, B.; Mashimo, T.; Kasahara, K.; Fukunishi, Y.; Nakamura, H. Virtual-system-coupled adaptive umbrella sampling to compute free-energy landscape for flexible molecular docking. J. Comput. Chem. 2015, 36, 1489–1501.

    CAS  Google Scholar 

  27. Limongelli, V.; Bonomi, M.; Parrinello, M. Funnel metadynamics as accurate binding free-energy method. Proc. Natl. Acad. Sci. USA 2013, 110, 6358–6363.

    CAS  Google Scholar 

  28. Pfaendtner, J.; Bonomi, M. Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J. Chem. Theory Comput. 2015, 11, 5062–5067.

    CAS  Google Scholar 

  29. Miao, Y. L.; Sinko, W.; Pierce, L.; Bucher, D.; Walker, R. C.; McCammon, J. A. Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J. Chem. Theory Comput. 2014, 10, 2677–2689.

    CAS  Google Scholar 

  30. Miao, Y. L.; Feher, V. A.; McCammon, J. A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 2015, 11, 3584–3595.

    CAS  Google Scholar 

  31. Yin, Y. D.; Yang, L. J.; Zheng, G. Q.; Gu, C.; Yi, C. Q.; He, C.; Gao, Y. Q.; Zhao, X. S. Dynamics of spontaneous flipping of a mismatched base in DNA duplex. Proc. Natl. Acad. Sci. USA 2014, 111, 8043–8048.

    CAS  Google Scholar 

  32. Ozer, G.; Valeev, E. F.; Quirk, S.; Hernandez, R. Adaptive steered molecular dynamics of the long-distance unfolding of neuropeptide Y. J. Chem. Theory Comput. 2010, 6, 3026–3038.

    CAS  Google Scholar 

  33. Ozer, G.; Keyes, T.; Quirk, S.; Hernandez, R. Multiple branched adaptive steered molecular dynamics. J. Chem. Phys. 2014, 141, 064101.

    Google Scholar 

  34. Fu, H. H.; Shao, X. G.; Chipot, C.; Cai, W. S. Extended adaptive biasing force algorithm. An on-the-fly implementation for accurate free-energy calculations. J. Chem. Theory Comput. 2016, 12, 3506–3513.

    CAS  Google Scholar 

  35. Rydzewski, J.; Nowak, W. Memetic algorithms for ligand expulsion from protein cavities. J. Chem. Phys. 2015, 143, 124101.

    CAS  Google Scholar 

  36. Mullen, R. G.; Shea, J. E.; Peters, B. Easy transition path sampling methods: Flexible-length aimless shooting and permutation shooting. J. Chem. Theory Comput. 2015, 11, 2421–2428.

    CAS  Google Scholar 

  37. Menzl, G.; Singraber, A.; Dellago, C. S-shooting: A Bennett-Chandler-like method for the computation of rate constants from committor trajectories. Faraday Discuss. 2016, 195, 345–364.

    CAS  Google Scholar 

  38. Gil-Ley, A.; Bussi, G. Enhanced conformational sampling using replica exchange with collective-variable tempering. J. Chem. Theory Comput. 2015, 11, 1077–1085.

    CAS  Google Scholar 

  39. Awasthi, S.; Nair, N. N. Exploring high dimensional free energy landscapes: Temperature accelerated sliced sampling. J. Chem. Phys. 2017, 146, 094108.

    Google Scholar 

  40. Moradi, M.; Tajkhorshid, E. Driven metadynamics: Reconstructing equilibrium free energies from driven adaptive-bias simulations. J. Phys. Chem. Lett. 2013, 4, 1882–1887.

    CAS  Google Scholar 

  41. Saglam, A. S.; Chong, L. T. Protein-protein binding pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations. Chem. Sci. 2019, 10, 2360–2372.

    CAS  Google Scholar 

  42. Motta, S.; Pandini, A.; Fornili, A.; Bonati, L. Reconstruction of ARNT PAS-B unfolding pathways by steered molecular dynamics and artificial neural networks. J. Chem. Theory Comput. 2021, 17, 2080–2089.

    CAS  Google Scholar 

  43. Huang, Y. M. M.; McCammon, J. A.; Miao, Y. L. Replica exchange Gaussian accelerated molecular dynamics: Improved enhanced sampling and free energy calculation. J. Chem. Theory Comput. 2018, 14, 1853–1864.

    CAS  Google Scholar 

  44. Moqadam, M.; Lervik, A.; Riccardi, E.; Venkatraman, V.; Alsberg, B. K.; van Erp, T. S. Local initiation conditions for water autoionization. Proc. Natl. Acad. Sci. USA 2018, 115, E4569–E4576.

    CAS  Google Scholar 

  45. Leitold, C.; Mundy, C. J.; Baer, M. D.; Schenter, G. K.; Peters, B. Solvent reaction coordinate for an SN2 reaction. J. Chem. Phys. 2020, 153, 024103.

    CAS  Google Scholar 

  46. Singh, H.; Sharma, S. Determination of equilibrium adsorbed morphologies of surfactants at metal-water interfaces using a modified umbrella sampling-based methodology. J. Chem. Theory Comput. 2022, 18, 2513–2520.

    CAS  Google Scholar 

  47. Newton, A. C.; Groenewold, J.; Kegel, W. K.; Bolhuis, P. G. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles. Proc. Natl. Acad. Sci. USA 2015, 112, 15308–15313.

    CAS  Google Scholar 

  48. Niu, H. Y.; Piaggi, P. M.; Invernizzi, M.; Parrinello, M. Molecular dynamics simulations of liquid silica crystallization. Proc. Natl. Acad. Sci. USA 2018, 115, 5348–5352.

    CAS  Google Scholar 

  49. Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 1954, 22, 1420–1426.

    CAS  Google Scholar 

  50. Zwanzig, R. W. High-temperature equation of state by a perturbation method. II. Polar gases. J. Chem. Phys. 1955, 23, 1915–1922.

    CAS  Google Scholar 

  51. Born, M. Volumen und Hydratationswärme der Ionen. Z. Physik 1920, 1, 45–48.

    CAS  Google Scholar 

  52. Kirkwood, J. G. Statistical mechanics of fluid mixtures. J. Chem. Phys. 1935, 3, 300–313.

    CAS  Google Scholar 

  53. Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A. The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 1997, 72, 1047–1069.

    CAS  Google Scholar 

  54. Deng, Y. Q.; Roux, B. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 2009, 113, 2234–2246.

    CAS  Google Scholar 

  55. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690–2693.

    CAS  Google Scholar 

  56. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach. Phys. Rev. E 1997, 56, 5018–5035.

    CAS  Google Scholar 

  57. Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199.

    Google Scholar 

  58. Torrie, G. M.; Valleau, J. P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 1974, 28, 578–581.

    CAS  Google Scholar 

  59. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021.

    CAS  Google Scholar 

  60. Kästner, J.; Thiel, W. Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration”. J. Chem. Phys. 2005, 123, 144104.

    Google Scholar 

  61. Tuckerman, M. E. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, 2010.

    Google Scholar 

  62. Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566.

    CAS  Google Scholar 

  63. Laio, A.; Rodriguez-Fortea, A.; Gervasio, F. L.; Ceccarelli, M.; Parrinello, M. Assessing the accuracy of metadynamics. J. Phys. Chem. B 2005, 109, 6714–6721.

    CAS  Google Scholar 

  64. Iannuzzi, M.; Laio, A.; Parrinello, M. Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. Phys. Rev. Lett. 2003, 90, 238302.

    Google Scholar 

  65. Bussi, G.; Laio, A.; Tiwary, P. Metadynamics: A unified framework for accelerating rare events and sampling thermodynamics and kinetics. In Handbook of Materials Modeling: Methods: Theory and Modeling. Andreoni, W.; Yip, S., Eds.; Springer: Cham, 2020; pp 1–31.

    Google Scholar 

  66. Barducci, A.; Bussi, G.; Parrinello, M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603.

    Google Scholar 

  67. Branduardi, D.; Bussi, G.; Parrinello, M. Metadynamics with adaptive gaussians. J. Chem. Theory Comput. 2012, 8, 2247–2254.

    CAS  Google Scholar 

  68. Tiana, G. Estimation of microscopic averages from metadynamics. Eur. Phys. J. B 2008, 63, 235–238.

    CAS  Google Scholar 

  69. Marinelli, F.; Pietrucci, F.; Laio, A.; Piana, S. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput. Biol. 2009, 5, e1000452.

    Google Scholar 

  70. Bonomi, M.; Barducci, A.; Parrinello, M. Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J. Comput. Chem. 2009, 30, 1615–1621.

    CAS  Google Scholar 

  71. Tiwary, P.; Parrinello, M. A time-independent free energy estimator for metadynamics. J. Phys. Chem. B 2015, 119, 736–742.

    CAS  Google Scholar 

  72. Valsson, O.; Tiwary, P.; Parrinello, M. Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 2016, 67, 159–184.

    CAS  Google Scholar 

  73. Smiatek, J.; Heuer, A. Calculation of free energy landscapes: A histogram reweighted metadynamics approach. J. Comput. Chem. 2011, 32, 2084–2096.

    CAS  Google Scholar 

  74. Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. WIREs Comput. Mol. Sci. 2011, 1, 826–843.

    CAS  Google Scholar 

  75. Laio, A.; Gervasio, F. L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601.

    Google Scholar 

  76. Hamelberg, D.; Mongan, J.; McCammon, J. A. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120, 11919–11929.

    CAS  Google Scholar 

  77. Miao, Y. L.; Feixas, F.; Eun, C.; McCammon, J. A. Accelerated molecular dynamics simulations of protein folding. J. Comput. Chem. 2015, 36, 1536–1549.

    CAS  Google Scholar 

  78. Eastwood, M. P.; Hardin, C.; Luthey-Schulten, Z.; Wolynes, P. G. Statistical mechanical refinement of protein structure prediction schemes: Cumulant expansion approach. J. Chem. Phys. 2002, 117, 4602–4615.

    CAS  Google Scholar 

  79. Hummer, G. Fast-growth thermodynamic integration: Error and efficiency analysis. J. Chem. Phys. 2001, 114, 7330–7337.

    CAS  Google Scholar 

  80. Saven, J. G. Designing protein energy landscapes. Chem. Rev. 2001, 101, 3113–3130.

    CAS  Google Scholar 

  81. Kenney, J. F. Mathematics of Statistics; 2nd ed. Van Nostrand: New York, 1951.

    Google Scholar 

  82. Berg, B. A.; Neuhaus, T. Multicanonical algorithms for first order phase transitions. Phys. Lett. B 1991, 267, 249–253.

    Google Scholar 

  83. Berg, B. A.; Celik, T. New approach to spin-glass simulations. Phys. Rev. Lett. 1992, 69, 2292–2295.

    CAS  Google Scholar 

  84. Berg, B. A.; Neuhaus, T. Multicanonical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. Lett. 1992, 68, 9–12.

    CAS  Google Scholar 

  85. Nakajima, N.; Nakamura, H.; Kidera, A. Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J. Phys. Chem. B 1997, 101, 817–824.

    CAS  Google Scholar 

  86. Berg, B. A. Introduction to multicanonical Monte Carlo simulations. 1999, arXiv: Cond-mat/9909236. arXiv.org e-Print archive. https://arxiv.org//abs/cond-mat/9909236 (accessed Sep 15,1999).

  87. Berg, B. A. The multicanonical ensemble: A new approach to computer simulations. Int. J. Mod. Phys. C 1992, 3, 1083–1098.

    Google Scholar 

  88. Hansmann, U. H. E.; Okamoto, Y. Comparative study of multicanonical and simulated annealing algorithms in the protein folding problem. Phys. A: Stat. Mech. Appl. 1994, 212, 415–437.

    CAS  Google Scholar 

  89. Lee, J. New Monte Carlo algorithm: Entropic sampling. Phys. Rev. Lett. 1993, 71, 211–214.

    CAS  Google Scholar 

  90. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092.

    CAS  Google Scholar 

  91. Wang, F.; Landau, D. P. Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram. Phys. Rev. E 2001, 64, 056101.

    CAS  Google Scholar 

  92. Landau, D. P.; Tsai, S. H.; Exler, M. A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am. J. Phys. 2004, 72, 1294–1302.

    Google Scholar 

  93. Wang, F. G.; Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 2001, 86, 2050–2053.

    CAS  Google Scholar 

  94. Zhou, C. G.; Bhatt, R. N. Understanding and improving the Wang-Landau algorithm. Phys. Rev. E 2005, 72, 025701.

    Google Scholar 

  95. Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov-Velyaminov, P. N. New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles. J. Chem. Phys. 1992, 96, 1776–1783.

    CAS  Google Scholar 

  96. Marinari, E.; Parisi, G. Simulated tempering: A new Monte Carlo scheme. Europhys. Lett. 1992, 19, 451–458.

    CAS  Google Scholar 

  97. Hansmann, U. H. E.; Okamoto, Y. Numerical comparisons of three recently proposed algorithms in the protein folding problem. J. Comput. Chem. 1997, 18, 920–933.

    CAS  Google Scholar 

  98. Nguyen, P. H.; Okamoto, Y.; Derreumaux, P. Communication: Simulated tempering with fast on-the-fly weight determination. J. Chem. Phys. 2013, 138, 061102.

    Google Scholar 

  99. Park, S.; Pande, V. S. Choosing weights for simulated tempering. Phys. Rev. E 2007, 76, 016703.

    Google Scholar 

  100. Atchadé, Y. F.; Roberts, G. O.; Rosenthal, J. S. Towards optimal scaling of metropolis-coupled Markov chain Monte Carlo. Stat. Comput. 2011, 21, 555–568.

    Google Scholar 

  101. Bhatnagar, N.; Randall, D. Simulated tempering and swapping on mean-field models. J. Stat. Phys. 2016, 164, 495–530.

    Google Scholar 

  102. Roberts, G. O.; Rosenthal, J. S. Minimising MCMC variance via diffusion limits, with an application to simulated tempering. Ann. Appl. Probab. 2014, 24, 131–149.

    Google Scholar 

  103. Tawn, N. G.; Roberts, G. O.; Rosenthal, J. S. Weight-preserving simulated tempering. Stat. Comput. 2020, 30, 27–41.

    Google Scholar 

  104. Woodard, D.; Schmidler, S.; Huber, M. Sufficient conditions for torpid mixing of parallel and simulated tempering. Electron. J. Probab. 2009, 14, 780–804.

    Google Scholar 

  105. Woodard, D. B.; Schmidler, S. C.; Huber, M. Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. Ann. Appl. Probab. 2009, 19, 617–640.

    Google Scholar 

  106. Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 1999, 314, 141–151.

    CAS  Google Scholar 

  107. Swendsen, R. H.; Wang, J. S. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 1986, 57, 2607–2609.

    CAS  Google Scholar 

  108. Geyer, C. J. Practical markov chain Monte Carlo. Stat. Sci. 1992, 7, 473–483.

    Google Scholar 

  109. Tesi, M. C.; Janse van Rensburg, E. J.; Orlandini, E.; Whittington, S. G. Monte Carlo study of the interacting self-avoiding walk model in three dimensions. J. Stat. Phys. 1996, 82, 155–181.

    Google Scholar 

  110. Hukushima, K.; Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 1996, 65, 1604–1608.

    CAS  Google Scholar 

  111. Hansmann, U. H. E. Parallel tempering algorithm for conformational studies of biological molecules. Chem. Phys. Lett. 1997, 281, 140–150.

    CAS  Google Scholar 

  112. Patriksson, A.; van der Spoel, D. A temperature predictor for parallel tempering simulations. Phys. Chem. Chem. Phys. 2008, 10, 2073–2077.

    CAS  Google Scholar 

  113. Rathore, N.; Chopra, M.; de Pablo, J. J. Optimal allocation of replicas in parallel tempering simulations. J. Chem. Phys. 2005, 122, 024111.

    Google Scholar 

  114. Zheng, W. H.; Andrec, M.; Gallicchio, E.; Levy, R. M. Simulating replica exchange simulations of protein folding with a kinetic network model. Proc. Natl. Acad. Sci. USA 2007, 104, 15340–15345.

    CAS  Google Scholar 

  115. Nymeyer, H. How efficient is replica exchange molecular dynamics? An analytic approach. J. Chem. Theory Comput. 2008, 4, 626–636.

    CAS  Google Scholar 

  116. Abraham, M. J.; Gready, J. E. Ensuring mixing efficiency of replica-exchange molecular dynamics simulations. J. Chem. Theory Comput. 2008, 4, 1119–1128.

    CAS  Google Scholar 

  117. Periole, X.; Mark, A. E. Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. J. Chem. Phys. 2007, 126, 014903.

    Google Scholar 

  118. Sindhikara, D. J.; Emerson, D. J.; Roitberg, A. E. Exchange often and properly in replica exchange molecular dynamics. J. Chem. Theory Comput. 2010, 6, 2804–2808.

    CAS  Google Scholar 

  119. Sindhikara, D.; Meng, Y. L.; Roitberg, A. E. Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys. 2008, 128, 024103.

    Google Scholar 

  120. Qi, R. X.; Wei, G. H.; Ma, B. Y.; Nussinov, R. Replica exchange molecular dynamics: A practical application protocol with solutions to common problems and a peptide aggregation and self-assembly example. In Peptide Self-Assembly: Methods and Protocols. Nilsson, B. L.; Doran, T. M., Eds.; Humana: New York, 2018; pp 101–119.

    Google Scholar 

  121. Ferrenberg, A. M.; Swendsen, R. H. New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett. 1988, 61, 2635–2638.

    CAS  Google Scholar 

  122. Gallicchio, E.; Andrec, M.; Felts, A. K.; Levy, R. M. Temperature weighted histogram analysis method, replica exchange, and transition paths. J. Phys. Chem. B 2005, 109, 6722–6731.

    CAS  Google Scholar 

  123. Chodera, J. D.; Swope, W. C.; Pitera, J. W.; Seok, C.; Dill, K. A. Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J. Chem. Theory Comput. 2007, 3, 26–41.

    CAS  Google Scholar 

  124. Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D. Transition path sampling and the calculation of rate constants. J. Chem. Phys. 1998, 108, 1964–1977.

    CAS  Google Scholar 

  125. Dellago, C.; Bolhuis, P. G.; Chandler, D. Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements. J. Chem. Phys. 1998, 108, 9236–9245.

    CAS  Google Scholar 

  126. Bolhuis, P. G.; Dellago, C.; Chandler, D. Sampling ensembles of deterministic transition pathways. Faraday Discuss. 1998, 110, 421–436.

    CAS  Google Scholar 

  127. Dellago, C.; Bolhuis, P. G.; Chandler, D. On the calculation of reaction rate constants in the transition path ensemble. J. Chem. Phys. 1999, 110, 6617–6625.

    CAS  Google Scholar 

  128. Pratt, L. R. A statistical method for identifying transition states in high dimensional problems. J. Chem. Phys. 1986, 85, 5045–5048.

    CAS  Google Scholar 

  129. Dellago, C.; Bolhuis, P. G. Transition path sampling and other advanced simulation techniques for rare events. In Advanced Computer Simulation Approaches for Soft Matter Sciences III. Holm, C.; Kremer, K., Eds.; Springer: Berlin Heidelberg, 2009; pp 167–233.

    Google Scholar 

  130. Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path sampling. In Advances in Chemical Physics. Prigogine, I.; Rice, S. A., Eds.; John Wiley & Sons, Inc.: Hoboken, 2002; pp 1–78.

    Google Scholar 

  131. Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. TRANSITION PATH SAMPLING: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 2002, 53, 291–318.

    CAS  Google Scholar 

  132. Bolhuis, P. G.; Swenson, D. W. H. Transition path sampling as markov chain Monte Carlo of trajectories: Recent algorithms, software, applications, and future outlook. Adv. Theory Simul. 2021, 4, 2000237.

    Google Scholar 

  133. Dellago, C.; Bolhuis, P. G.; Geissler, P. L. Transition path sampling methods. In Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Volume 1. Ferrario, M.; Ciccotti, G.; Binder, K., Eds.; Springer: Berlin Heidelberg, 2006; pp 349–391.

    Google Scholar 

  134. Vanden-Eijnden, E. Transition path theory. In Computer Simulations in Condensed Matter: From Materials to Chemical Biology. Volume 1. Ferrario, M.; Ciccotti, G.; Binder, K., Eds.; Springer: Berlin Heidelberg, 2006; pp 453–493.

    Google Scholar 

  135. Siepmann, J. I.; Frenkel, D. Configurational bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992, 75, 59–70.

    CAS  Google Scholar 

  136. Huber, G. A.; Kim, S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J. 1996, 70, 97–110.

    CAS  Google Scholar 

  137. Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin. Proc. Natl. Acad. Sci. USA 2007, 104, 18043–18048.

    CAS  Google Scholar 

  138. Zhang, B. W.; Jasnow, D.; Zuckerman, D. M. The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures. J. Chem. Phys. 2010, 132, 054107.

    Google Scholar 

  139. Bhatt, D.; Zhang, B. W.; Zuckerman, D. M. Steady-state simulations using weighted ensemble path sampling. J. Chem. Phys. 2010, 133, 014110.

    Google Scholar 

  140. Suárez, E.; Lettieri, S.; Zwier, M. C.; Stringer, C. A.; Subramanian, S. R.; Chong, L. T.; Zuckerman, D. M. Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories. J. Chem. Theory Comput. 2014, 10, 2658–2667.

    Google Scholar 

  141. Dickson, A.; Brooks III, C. L. WExplore: Hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm. J. Phys. Chem. B 2014, 118, 3532–3542.

    CAS  Google Scholar 

  142. Donovan, R. M.; Sedgewick, A. J.; Faeder, J. R.; Zuckerman, D. M. Efficient stochastic simulation of chemical kinetics networks using a weighted ensemble of trajectories. J. Chem. Phys. 2013, 139, 115105.

    Google Scholar 

  143. Copperman, J.; Zuckerman, D. M. Accelerated estimation of long-timescale kinetics from weighted ensemble simulation via non-markovian “microbin” analysis. J. Chem. Theory Comput. 2020, 16, 6763–6775.

    CAS  Google Scholar 

  144. DeGrave, A. J.; Bogetti, A. T.; Chong, L. T. The RED scheme: Rate-constant estimation from pre-steady state weighted ensemble simulations. J. Chem. Phys. 2021, 154, 114111.

    Google Scholar 

  145. Suárez, E.; Pratt, A. J.; Chong, L. T.; Zuckerman, D. M. Estimating first-passage time distributions from weighted ensemble simulations and non-Markovian analyses. Protein Sci. 2016, 25, 67–78.

    Google Scholar 

  146. Aristoff, D.; Copperman, J.; Simpson, G.; Webber, R. J.; Zuckerman, D. M. Weighted ensemble: Recent mathematical developments. J. Chem. Phys. 2023, 158, 014108.

    CAS  Google Scholar 

  147. Zuckerman, D. M.; Chong, L. T. Weighted ensemble simulation: Review of methodology, applications, and software. Annu. Rev. Biophys. 2017, 46, 43–57.

    CAS  Google Scholar 

  148. Chong, L. T.; Saglam, A. S.; Zuckerman, D. M. Path-sampling strategies for simulating rare events in biomolecular systems. Curr. Opin. Struct. Biol. 2017, 43, 88–94.

    CAS  Google Scholar 

  149. Hill, T. L. Free Energy Transduction and Biochemical Cycle Kinetics; Springer: New York, 1989.

    Google Scholar 

  150. van Erp, T. S.; Moroni, D.; Bolhuis, P. G. A novel path sampling method for the calculation of rate constants. J. Chem. Phys. 2003, 118, 7762–7774.

    CAS  Google Scholar 

  151. Adhikari, U.; Mostofian, B.; Copperman, J.; Subramanian, S. R.; Petersen, A. A.; Zuckerman, D. M. Computational estimation of microsecond to second atomistic folding times. J. Am. Chem. Soc. 2019, 141, 6519–6526.

    CAS  Google Scholar 

  152. Aristoff, D. An ergodic theorem for the weighted ensemble method. J. Appl. Probab. 2022, 59, 152–166.

    Google Scholar 

  153. Webber, R. J.; Aristoff, D.; Simpson, G. A splitting method to reduce MCMC variance. 2020, arXiv: 2011.13899. arXiv.org e-Print archive. https://arxiv.org/abs/2011.13899 (accessed Dev 16, 2020).

  154. Aristoff, D. Analysis and optimization of weighted ensemble sampling. ESAIM: Math. Modell. Numer. Anal. 2018, 52, 1219–1238.

    Google Scholar 

  155. Aristoff, D.; Zuckerman, D. M. Optimizing weighted ensemble sampling of steady states. Multiscale Model. Simul. 2020, 18, 646–673.

    Google Scholar 

  156. Gao, Y. Q. An integrate-over-temperature approach for enhanced sampling. J. Chem. Phys. 2008, 128, 064105.

    Google Scholar 

  157. Yang, L. J.; Shao, Q.; Gao, Y. Q. Comparison between integrated and parallel tempering methods in enhanced sampling simulations. J. Chem. Phys. 2009, 130, 124111.

    Google Scholar 

  158. Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. Steered molecular dynamics. In Proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, Germany, 1999, pp 39–65.

  159. Isralewitz, B.; Gao, M.; Schulten, K. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 2001, 11, 224–230.

    CAS  Google Scholar 

  160. Darve, E.; Pohorille, A. Calculating free energies using average force. J. Chem. Phys. 2001, 115, 9169–9183.

    CAS  Google Scholar 

  161. Lüdemann, S. K.; Lounnas, V.; Wade, R. C. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J. Mol.Biol. 2000, 303, 797–811.

    Google Scholar 

  162. Bussi, G.; Gervasio, F. L.; Laio, A.; Parrinello, M. Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 2006, 128, 13435–13441.

    CAS  Google Scholar 

  163. Sabri Dashti, D.; Roitberg, A. E. Optimization of umbrella sampling replica exchange molecular dynamics by replica positioning. J. Chem. Theory Comput. 2013, 9, 4692–4699.

    CAS  Google Scholar 

  164. Barducci, A.; Bonomi, M.; Prakash, M. K.; Parrinello, M. Free-energy landscape of protein oligomerization from atomistic simulations. Proc. Natl. Acad. Sci. USA 2013, 110, E4708–E4713.

    CAS  Google Scholar 

  165. Deighan, M.; Bonomi, M.; Pfaendtner, J. Efficient simulation of explicitly solvated proteins in the well-tempered ensemble. J. Chem. Theory Comput. 2012, 8, 2189–2192.

    CAS  Google Scholar 

  166. Zhang, Y.; Voth, G. A. Combined metadynamics and umbrella sampling method for the calculation of ion permeation free energy profiles. J. Chem. Theory Comput. 2011, 7, 2277–2283.

    CAS  Google Scholar 

  167. Zheng, L. Q.; Chen, M. G.; Yang, W. Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. Proc. Natl. Acad. Sci. USA 2008, 105, 20227–20232.

    CAS  Google Scholar 

  168. Fajer, M.; Hamelberg, D.; McCammon, J. A. Replica-exchange accelerated molecular dynamics (REXAMD) applied to thermodynamic integration. J. Chem. Theory Comput. 2008, 4, 1565–1569.

    CAS  Google Scholar 

  169. Tiwary, P.; Mondal, J.; Berne, B. J. How and when does an anticancer drug leave its binding site. Sci. Adv. 2017, 3, e1700014.

    Google Scholar 

  170. Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello, M. Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. J. Am. Chem. Soc. 2017, 139, 4780–4788.

    CAS  Google Scholar 

  171. Kokh, D. B.; Amaral, M.; Bomke, J.; Grädler, U.; Musil, D.; Buchstaller, H. P.; Dreyer, M. K.; Frech, M.; Lowinski, M.; Vallee, F. et al. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J. Chem. Theory Comput. 2018, 14, 3859–3869.

    CAS  Google Scholar 

  172. Shinobu, A.; Re, S.; Sugita, Y. Practical Protocols for efficient sampling of kinase-inhibitor binding pathways using two-dimensional replica-exchange molecular dynamics. Front. Mol. Biosci. 2022, 9, 878830.

    CAS  Google Scholar 

  173. Chen, J. Z.; Zeng, Q. K.; Wang, W.; Hu, Q. Q.; Bao, H. Y. Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Adv. 2022, 12, 1742–1757.

    Google Scholar 

  174. Chen, J. Z.; Zhang, S. L.; Wang, W.; Pang, L. X.; Zhang, Q. G.; Liu, X. G. Mutation-induced impacts on the switch transformations of the GDP- and GTP-bound K-ras: Insights from multiple replica Gaussian accelerated molecular dynamics and free energy analysis. J. Chem. Inf. Model. 2021, 61, 1954–1969.

    CAS  Google Scholar 

  175. Bhardwaj, V. K.; Purohit, R. A lesson for the maestro of the replication fork: Targeting the protein-binding interface of proliferating cell nuclear antigen for anticancer therapy. J. Cell. Biochem. 2022, 123, 1091–1102.

    CAS  Google Scholar 

  176. Singh, R.; Bhardwaj, V. K.; Das, P.; Bhattacherjee, D.; Zyryanov, G. V.; Purohit, R. Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Comput. Biol. Med. 2022, 146, 105572.

    CAS  Google Scholar 

  177. Parihar, A.; Sonia, Z. F.; Akter, F.; Ali, M. A.; Hakim, F. T.; Hossain, M. S. Phytochemicals-based targeting RdRp and main protease of SARS-CoV-2 using docking and steered molecular dynamic simulation: A promising therapeutic approach for Tackling COVID-19. Comput. Biol. Med. 2022, 145, 105468.

    CAS  Google Scholar 

  178. Kumar Bhardwaj, V.; Das, P.; Purohit, R. Identification and comparison of plant-derived scaffolds as selective CDK5 inhibitors against standard molecules: Insights from umbrella sampling simulations. J. Mol. Liq. 2022, 348, 118015.

    CAS  Google Scholar 

  179. Singh, R.; Bhardwaj, V. K.; Das, P.; Purohit, R. Identification of 11β-HSD1 inhibitors through enhanced sampling methods. Chem. Commun. 2022, 58, 5005–5008.

    CAS  Google Scholar 

  180. Niu, Y. Z.; Shi, D. F.; Li, L. L.; Guo, J. Y.; Liu, H. X.; Yao, X. J. Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Sci. Rep. 2017, 7, 46547.

    CAS  Google Scholar 

  181. Muvva, C.; Murugan, N. A.; Kumar Choutipalli, V. S.; Subramanian, V. Unraveling the unbinding pathways of products formed in catalytic reactions involved in SIRT1-3: A random acceleration molecular dynamics simulation study. J. Chem. Inf. Model. 2019, 59, 4100–4115.

    CAS  Google Scholar 

  182. Wang, G.; Zhu, X. Y.; Song, X. N.; Zhang, Q. W.; Qian, Z. Y. Melatonin inhibits hIAPP oligomerization by preventing β-sheet and hydrogen bond formation of the amyloidogenic region revealed by replica-exchange molecular dynamics simulation. Int. J. Mol. Sci. 2022, 23, 10264.

    CAS  Google Scholar 

  183. Sidler, D.; Cristòfol-Clough, M.; Riniker, S. Efficient round-trip time optimization for replica-exchange enveloping distribution sampling (RE-EDS). J. Chem. Theory Comput. 2017, 13, 3020–3030.

    CAS  Google Scholar 

  184. Ries, B.; Normak, K.; Weiß, R. G.; Rieder, S.; Barros, E. P.; Champion, C.; König, G.; Riniker, S. Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure. J. Comput. Aided Mol. Des. 2022, 36, 117–130.

    CAS  Google Scholar 

  185. Tam, N. M.; Nguyen, T. H.; Ngan, V. T.; Tung, N. T.; Ngo, S. T. Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations. Roy. Soc. Open Sci. 2022, 9, 211480.

    CAS  Google Scholar 

  186. Khan, N.; Kumar Bhardwaj, V.; Ruchika; Purohit, R.; Saneja, A. Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J. Mol. Liq. 2023, 374, 121295.

    CAS  Google Scholar 

  187. Sanusi, Z. K.; Lawal, M. M.; Gupta, P. L.; Govender, T.; Baijnath, S.; Naicker, T.; Maguire, G. E. M.; Honarparvar, B.; Roitberg, A. E.; Kruger, H. G. Exploring the concerted mechanistic pathway for HIV-1 PR-substrate revealed by umbrella sampling simulation. J. Biomol. Struct. Dyn. 2022, 40, 1736–1747.

    CAS  Google Scholar 

  188. Ghorbani, M.; Hudson, P. S.; Jones, M. R.; Aviat, F.; Meana-Pañeda, R.; Klauda, J. B.; Brooks, B. R. A replica exchange umbrella sampling (REUS) approach to predict host-guest binding free energies in SAMPL8 challenge. J. Comput. Aided Mol. Des. 2021, 35, 667–677.

    CAS  Google Scholar 

  189. Raniolo, S.; Limongelli, V. Ligand binding free-energy calculations with funnel metadynamics. Nat. Protoc. 2020, 15, 2837–2866.

    CAS  Google Scholar 

  190. Brotzakis, Z. F.; Limongelli, V.; Parrinello, M. Accelerating the calculation of protein-ligand binding free energy and residence times using dynamically optimized collective variables. J. Chem. Theory Comput. 2019, 15, 743–750.

    CAS  Google Scholar 

  191. Wang, J.; Ishchenko, A.; Zhang, W.; Razavi, A.; Langley, D. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein-protein and protein-ligand binding potencies. Sci. Rep. 2022, 12, 2024.

    CAS  Google Scholar 

  192. Wang, J. N.; Alekseenko, A.; Kozakov, D.; Miao, Y. L. Improved modeling of peptide-protein binding through global docking and accelerated molecular dynamics simulations. Front. Mol. Biosci. 2019, 6, 112.

    CAS  Google Scholar 

  193. Wang, J. N.; Miao, Y. L. Protein-protein interaction-Gaussian accelerated molecular dynamics (PPI-GaMD): Characterization of protein binding thermodynamics and kinetics. J. Chem. Theory Comput. 2022, 18, 1275–1285.

    CAS  Google Scholar 

  194. Wang, J. N.; Miao, Y. L. Ligand Gaussian accelerated molecular dynamics 2 (LiGaMD2): Improved calculations of ligand binding thermodynamics and kinetics with closed protein pocket. J. Chem. Theory Comput. 2023, 19, 733–745.

    CAS  Google Scholar 

  195. Miao, Y. L.; Bhattarai, A.; Wang, J. N. Ligand Gaussian accelerated molecular dynamics (LiGaMD): Characterization of ligand binding thermodynamics and kinetics. J. Chem. Theory Comput. 2020, 16, 5526–5547.

    CAS  Google Scholar 

  196. Fratev, F.; Steinbrecher, T.; Jónsdóttir, S. Ó. Prediction of accurate binding modes using combination of classical and accelerated molecular dynamics and free-energy perturbation calculations: An application to toxicity studies. ACS Omega 2018, 3, 4357–4371.

    CAS  Google Scholar 

  197. Potterton, A.; Husseini, F. S.; Southey, M. W. Y.; Bodkin, M. J.; Heifetz, A.; Coveney, P. V.; Townsend-Nicholson, A. Ensemble-based steered molecular dynamics predicts relative residence time of A2A receptor binders. J. Chem. Theory Comput. 2019, 15, 3316–3330.

    CAS  Google Scholar 

  198. Célerse, F.; Lagardère, L.; Derat, E.; Piquemal, J. P. Massively parallel implementation of Steered Molecular Dynamics in Tinker-HP: Comparisons of polarizable and non-polarizable simulations of realistic systems. J. Chem. Theory Comput. 2019, 15, 3694–3709.

    Google Scholar 

  199. Zhang, Y.; Lin, Z. Y.; Fang, Y.; Wu, J. H. Prediction of catch-slip bond transition of kindlin2/β3 integrin via steered molecular dynamics simulation. J. Chem. Inf. Model. 2020, 60, 5132–5141.

    CAS  Google Scholar 

  200. Spiriti, J.; Wong, C. F. Qualitative prediction of ligand dissociation kinetics from focal adhesion kinase using steered molecular dynamics. Life 2021, 11, 74.

    CAS  Google Scholar 

  201. Kokh, D. B.; Doser, B.; Richter, S.; Ormersbach, F.; Cheng, X. Y.; Wade, R. C. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories. J. Chem. Phys. 2020, 153, 125102.

    CAS  Google Scholar 

  202. Nunes-Alves, A.; Kokh, D. B.; Wade, R. C. Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations. Curr. Res. Struct. Biol. 2021, 3, 106–111.

    CAS  Google Scholar 

  203. Kokh, D. B.; Wade, R. C. G protein-coupled receptor-ligand dissociation rates and mechanisms from τRAMD simulations. J. Chem. Theory Comput. 2021, 17, 6610–6623.

    CAS  Google Scholar 

  204. Leonhard, A. C.; Whitmer, J. K. Accurate determination of cavitand binding free energies via unrestrained advanced sampling. J. Chem. Theory Comput. 2019, 15, 5761–5768.

    CAS  Google Scholar 

  205. Domański, J.; Sansom, M. S. P.; Stansfeld, P. J.; Best, R. B. Atomistic mechanism of transmembrane helix association. PLoS Comput. Biol. 2020, 16, e1007919.

    Google Scholar 

  206. Dickson, A.; Lotz, S. D. Multiple ligand unbinding pathways and ligand-induced destabilization revealed by WExplore. Biophys. J. 2017, 112, 620–629.

    CAS  Google Scholar 

  207. Donyapour, N.; Roussey, N. M.; Dickson, A. REVO: Resampling of ensembles by variation optimization. J. Chem. Phys. 2019, 150, 244112.

    Google Scholar 

  208. Saglam, A. S.; Chong, L. T. Highly efficient computation of the basal kon using direct simulation of protein-protein association with flexible molecular models. J. Phys. Chem. B 2016, 120, 117–122.

    CAS  Google Scholar 

  209. Ricci, C. G.; Chen, J. S.; Miao, Y. L.; Jinek, M.; Doudna, J. A.; McCammon, J. A.; Palermo, G. Deciphering off-target effects in CRISPR-Cas9 through accelerated molecular dynamics. ACS Cent. Sci. 2019, 5, 651–662.

    CAS  Google Scholar 

  210. Riccardi, E.; Van Mastbergen, E. C.; Navarre, W. W.; Vreede, J. Predicting the mechanism and rate of H-NS binding to AT-rich DNA. PLoS Comput. Biol. 2019, 15, e1006845.

    Google Scholar 

  211. Ning, S. B.; Chao, H. J.; Li, S. L.; Zhou, R.; Zou, L.; Zhang, X.; Liu, J.; Yan, D. Z.; Duan, M. J. The auto-inhibition mechanism of transcription factor Ets-1 induced by phosphorylation on the intrinsically disordered region. Comput. Struct. Biotechnol. J. 2022, 20, 1132–1141.

    CAS  Google Scholar 

  212. Peng, Y. H.; Yang, Y.; Li, L.; Jia, Z.; Cao, W. G.; Alexov, E. DFMD: Fast and effective DelPhiForce steered molecular dynamics approach to model ligand approach toward a receptor: Application to spermine synthase enzyme. Front. Mol. Biosci. 2019, 6, 74.

    CAS  Google Scholar 

  213. Crean, R. M.; Biler, M.; van der Kamp, M. W.; Hengge, A. C.; Kamerlin, S. C. L. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 2021, 143, 3830–3845.

    CAS  Google Scholar 

  214. Calvó-Tusell, C.; Maria-Solano, M. A.; Osuna, S.; Feixas, F. Time evolution of the millisecond allosteric activation of imidazole glycerol phosphate synthase. J. Am. Chem. Soc. 2022, 144, 7146–7159.

    Google Scholar 

  215. Lence, E.; van der Kamp, M. W.; González-Bello, C.; Mulholland, A. J. QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Org. Biomol. Chem. 2018, 16, 4443–4455.

    CAS  Google Scholar 

  216. Canini, G.; Lo Cåscio, E.; Della Longa, S.; Cecconi, F.; Arcovito, A. Human glucosylceramide synthase at work as provided by “in silico” molecular docking, molecular dynamics, and metadynamics. ACS Omega 2023, 8, 8755–8765.

    CAS  Google Scholar 

  217. Mahdizadeh, S. J.; Palsson, E.; Carlesso, A.; Chevet, E.; Eriksson, L. A. QM/MM well-tempered metadynamics study of the mechanism of XBP1 mRNA cleavage by inositol requiring enzyme 1α RNase. J. Chem. Inf. Model. 2022, 62, 4247–4260.

    CAS  Google Scholar 

  218. Dutta, S.; Chandra, A. Free energy landscape of the adenylation reaction of the aminoacylation process at the active site of aspartyl tRNA synthetase. J. Phys. Chem. B 2022, 126, 5821–5831.

    CAS  Google Scholar 

  219. Dutta, S.; Chandra, A. A multiple proton transfer mechanism for the charging step of the aminoacylation reaction at the active site of aspartyl tRNA synthetase. J. Chem. Inf. Model. 2023, 63, 1819–1832.

    CAS  Google Scholar 

  220. Lu, X. L.; Huang, J. A thermodynamic investigation of amyloid precursor protein processing by human γ-secretase. Commun. Biol. 2022, 5, 837.

    CAS  Google Scholar 

  221. Do, H. N.; Devkota, S.; Bhattarai, A.; Wolfe, M. S.; Miao, Y. L. Effects of presenilin-1 familial Alzheimer’s disease mutations on γ-secretase activation for cleavage of amyloid precursor protein. Commun. Biol. 2023, 6, 174.

    CAS  Google Scholar 

  222. Kania, S.; Oztekin, A.; Cheng, X. H.; Zhang, X. F.; Webb, E. Predicting pathological von Willebrand factor unraveling in elongational flow. Biophys. J. 2021, 120, 1903–1915.

    CAS  Google Scholar 

  223. Wang, J. N.; Peng, C.; Yu, Y. Q.; Chen, Z. Q.; Xu, Z. J.; Cai, T. T.; Shao, Q.; Shi, J. Y.; Zhu, W. L. Exploring conformational change of adenylate kinase by replica exchange molecular dynamic simulation. Biophys. J. 2020, 118, 1009–1018.

    CAS  Google Scholar 

  224. Miao, Y. L.; Huang, Y. M. M.; Walker, R. C.; McCammon, J. A.; Chang, C. E. A. Ligand binding pathways and conformational transitions of the HIV protease. Biochemistry 2018, 57, 1533–1541.

    CAS  Google Scholar 

  225. Ngo, S. T.; Nguyen, P. H.; Derreumaux, P. Impact of A2T and D23N mutations on tetrameric Aβ42 barrel within a dipalmitoylphosphatidylcholine lipid bilayer membrane by replica exchange molecular dynamics. J. Phys. Chem. B 2020, 124, 1175–1182.

    CAS  Google Scholar 

  226. Oshima, H.; Re, S.; Sugita, Y. Replica-exchange umbrella sampling combined with Gaussian accelerated molecular dynamics for free-energy calculation of biomolecules. J. Chem. Theory Comput. 2019, 15, 5199–5208.

    CAS  Google Scholar 

  227. Faidon Brotzakis, Z.; Löhr, T.; Truong, S.; Hoff, S.; Bonomi, M.; Vendruscolo, M. Determination of the structure and dynamics of the fuzzy coat of an amyloid fibril of IAPP using cryo-electron microscopy. Biochemistry 2023, 62, 2407–2416.

    CAS  Google Scholar 

  228. Tolosa, S.; Sansón, J. A.; Hidalgo, A. Theoretical study of adenine to guanine transition assisted by water and formic acid using steered molecular dynamic simulations. Front. Chem. 2019, 7, 414.

    CAS  Google Scholar 

  229. Vreede, J.; Pérez de Alba Ortíz, A.; Bolhuis, P. G.; Swenson, D. W. H. Atomistic insight into the kinetic pathways for Watson-Crick to Hoogsteen transitions in DNA. Nucleic Acids Res. 2019, 47, 11069–11076.

    CAS  Google Scholar 

  230. Kamiya, M.; Sugita, Y. Flexible selection of the solute region in replica exchange with solute tempering: Application to protein-folding simulations. J. Chem. Phys. 2018, 149, 072304.

    Google Scholar 

  231. Invernizzi, M.; Krämer, A.; Clementi, C.; Noé, F. Skipping the replica exchange ladder with normalizing flows. J. Phys. Chem. Lett. 2022, 13, 11643–11649.

    CAS  Google Scholar 

  232. Shao, Q.; Shi, J. Y.; Zhu, W. L. Determining protein folding pathway and associated energetics through partitioned integrated-tempering-sampling simulation. J. Chem. Theory Comput. 2017, 13, 1229–1243.

    CAS  Google Scholar 

  233. Kapakayala, A. B.; Nair, N. N. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics. J. Comput. Chem. 2021, 42, 2233–2240.

    CAS  Google Scholar 

  234. Chen, H. C.; Fu, H. H.; Chipot, C.; Shao, X. G.; Cai, W. S. Overcoming free-energy barriers with a seamless combination of a biasing force and a collective variable-independent boost potential. J. Chem. Theory Comput. 2021, 17, 3886–3894.

    CAS  Google Scholar 

  235. Ahn, S. H.; Ojha, A. A.; Amaro, R. E.; McCammon, J. A. Gaussian-accelerated molecular dynamics with the weighted ensemble method: A hybrid method improves thermodynamic and kinetic sampling. J. Chem. Theory Comput. 2021, 17, 7938–7951.

    CAS  Google Scholar 

  236. Pal, A.; Pal, S.; Verma, S.; Shiga, M.; Nair, N. N. Mean force based temperature accelerated sliced sampling: Efficient reconstruction of high dimensional free energy landscapes. J. Comput. Chem. 2021, 42, 1996–2003.

    CAS  Google Scholar 

  237. Zhuang, Y.; Bureau, H. R.; Quirk, S.; Hernandez, R. Adaptive steered molecular dynamics of biomolecules. Mol. Simul. 2021, 47, 408–419.

    CAS  Google Scholar 

  238. Yang, Y. I.; Niu, H. Y.; Parrinello, M. Combining metadynamics and integrated tempering sampling. J. Phys. Chem. Lett. 2018, 9, 6426–6430.

    CAS  Google Scholar 

  239. Leyssale, J. M.; Galvez, M. E.; Valdenaire, P. L.; Pellenq, R.; van Duin, A. C. T. Atomic-scale mechanism of carbon nucleation from a deep crustal fluid by replica exchange reactive molecular dynamics simulation. Geochim. Cosmochim. Acta 2022, 329, 106–118.

    CAS  Google Scholar 

  240. Niu, H. Y.; Yang, Y. I.; Parrinello, M. Temperature dependence of homogeneous nucleation in ice. Phys. Rev. Lett. 2019, 122, 245501.

    CAS  Google Scholar 

  241. Díaz Leines, G.; Rogal, J. Maximum likelihood analysis of reaction coordinates during solidification in Ni. J. Phys. Chem. B 2018, 122, 10934–10942.

    Google Scholar 

  242. Liang, Y. Y.; Díaz Leines, G.; Drautz, R.; Rogal, J. Identification of a multi-dimensional reaction coordinate for crystal nucleation in Ni3Al. J. Chem. Phys. 2020, 152, 224504.

    CAS  Google Scholar 

  243. Menzl, G.; Gonzalez, M. A.; Geiger, P.; Caupin, F.; Abascal, J. L. F.; Valeriani, C.; Dellago, C. Molecular mechanism for cavitation in water under tension. Proc. Natl. Acad. Sci. USA 2016, 113, 13582–13587.

    CAS  Google Scholar 

  244. Arjun, A.; Bolhuis, P. G. Homogenous nucleation rate of CO2 hydrates using transition interface sampling. J. Chem. Phys. 2021, 154, 164507.

    CAS  Google Scholar 

  245. Joswiak, M. N.; Doherty, M. F.; Peters, B. Ion dissolution mechanism and kinetics at kink sites on NaCl surfaces. Proc. Natl. Acad. Sci. USA 2018, 115, 656–661.

    CAS  Google Scholar 

  246. He, Z. L.; Feng, G.; Yang, B.; Yang, L. J.; Liu, C. W.; Xu, H. G.; Xu, X. L.; Zheng, W. J.; Gao, Y. Q. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride. J. Chem. Phys. 2018, 148, 222839.

    Google Scholar 

  247. Biswas, S.; Wong, B. M. Ab initio metadynamics calculations reveal complex interfacial effects in acetic acid deprotonation dynamics. J. Mol. Liq. 2021, 330, 115624.

    CAS  Google Scholar 

  248. Mandelli, D.; Hirshberg, B.; Parrinello, M. Metadynamics of paths. Phys. Rev. Lett. 2020, 125, 026001.

    CAS  Google Scholar 

  249. Fang, Y. G.; Li, X. J.; Gao, Y. R.; Cui, Y. H.; Francisco, J. S.; Zhu, C. Q.; Fang, W. H. Efficient exploration of complex free energy landscapes by stepwise multi-subphase space metadynamics. J. Chem. Phys. 2022, 157, 214111.

    CAS  Google Scholar 

  250. Rieder, S. R.; Ries, B.; Schaller, K.; Champion, C.; Barros, E. P.; Hünenberger, P. H.; Riniker, S. Replica-exchange enveloping distribution sampling using generalized AMBER force-field topologies: Application to relative hydration free-energy calculations for large sets of molecules. J. Chem. Inf. Model. 2022, 62, 3043–3056.

    CAS  Google Scholar 

  251. Zhang, J.; Zhang, Z.; Yang, Y. I.; Liu, S. R.; Yang, L. J.; Gao, Y. Q. Rich dynamics underlying solution reactions revealed by sampling and data mining of reactive trajectories. ACS Cent. Sci. 2017, 3, 407–414.

    CAS  Google Scholar 

  252. Han, X.; Zhang, J.; Yang, Y. I.; Zhang, Z.; Yang, L. J.; Gao, Y. Q. Enhanced sampling simulation reveals how solvent influences chirogenesis of the intra-molecular diels-alder reaction. J. Chem. Theory Comput. 2022, 18, 4318–4326.

    CAS  Google Scholar 

  253. Daub, C. D.; Riccardi, E.; Hänninen, V.; Halonen, L. Path sampling for atmospheric reactions: Formic acid catalysed conversion of SO3+ H2O to H2SO4. PeerJ Phys. Chem. 2020, 2, e7.

    Google Scholar 

  254. Okazaki, K. I.; Wöhlert, D.; Warnau, J.; Jung, H.; Yildiz, Ö.; Kühlbrandt, W.; Hummer, G. Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting. Nat. Commun. 2019, 10, 1742.

    Google Scholar 

  255. Fu, H. H.; Zhang, H.; Chen, H. C.; Shao, X. G.; Chipot, C.; Cai, W. S. Zooming across the free-energy landscape: Shaving barriers, and flooding valleys. J. Phys. Chem. Lett. 2018, 9, 4738–4745.

    CAS  Google Scholar 

  256. Fu, H. H.; Chen, H. C.; Wang, X. A.; Chai, H.; Shao, X. G.; Cai, W. S.; Chipot, C. Finding an optimal pathway on a multidimensional free-energy landscape. J. Chem. Inf. Model. 2020, 60, 5366–5374.

    CAS  Google Scholar 

  257. Lee, C. T.; Comer, J.; Herndon, C.; Leung, N.; Pavlova, A.; Swift, R. V.; Tung, C.; Rowley, C. N.; Amaro, R. E.; Chipot, C. et al. Simulation-based approaches for determining membrane permeability of small compounds. J. Chem. Inf. Model. 2016, 56, 721–733.

    CAS  Google Scholar 

  258. Lim, V. T.; Freites, J. A.; Tombola, F.; Tobias, D. J. Thermodynamics and mechanism of the membrane permeation of Hv1 channel blockers. J. Membr. Biol. 2021, 254, 5–16.

    CAS  Google Scholar 

  259. Mehrabian, H.; Trout, B. L. In silico engineering of hydrate anti-agglomerant molecules using bias-exchange metadynamics simulations. J. Phys. Chem. C 2020, 124, 18983–18992.

    CAS  Google Scholar 

  260. Newton, A. C.; Groenewold, J.; Kegel, W. K.; Bolhuis, P. G. The role of multivalency in the association kinetics of patchy particle complexes. J. Chem. Phys. 2017, 146, 234901.

    Google Scholar 

  261. Zhou, R.; Duan, M. J. Metadynamics simulations to study the structural ensembles and binding processes of intrinsically disordered proteins. In Computational Peptide Science: Methods and Protocols. Simonson, T., Ed.; Humana: New York, 2022; pp 169–178.

    Google Scholar 

  262. Kowaguchi, A.; Endo, K.; Brumby, P. E.; Nomura, K.; Yasuoka, K. Optimal replica-exchange molecular simulations in combination with evolution strategies. J. Chem. Inf. Model. 2022, 62, 6544–6552.

    CAS  Google Scholar 

  263. Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 2019, 365, eaaw1147.

    Google Scholar 

  264. Wang, Y. H.; Ribeiro, J. M. L.; Tiwary, P. Past-future information bottleneck for sampling molecular reaction coordinate simultaneously with thermodynamics and kinetics. Nat. Commun. 2019, 10, 3573.

    Google Scholar 

  265. Kleiman, D. E.; Shukla, D. Multiagent reinforcement learning-based adaptive sampling for conformational dynamics of proteins. J. Chem. Theory Comput. 2022, 18, 5422–5434.

    CAS  Google Scholar 

  266. Spiwok, V.; Kurečka, M.; Křenek, A. Collective variable for metadynamics derived from AlphaFold output. Front. Mol. Biosci. 2022, 9, 878133.

    CAS  Google Scholar 

  267. Piskulich, Z. A.; Cui, Q. Machine learning-assisted phase transition temperatures from generalized replica exchange simulations of dry martini lipid bilayers. J. Phys. Chem. Lett. 2022, 13, 6481–6486.

    CAS  Google Scholar 

  268. Ketkaew, R.; Luber, S. DeepCV: A deep learning framework for blind search of collective variables in expanded configurational space. J. Chem. Inf. Model. 2022, 62, 6352–6364.

    CAS  Google Scholar 

  269. Lamim Ribeiro, J. M.; Provasi, D.; Filizola, M. A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors. J. Chem. Phys. 2020, 153, 124105.

    CAS  Google Scholar 

  270. Belkacemi, Z.; Gkeka, P.; Lelièvre, T.; Stoltz, G. Chasing collective variables using autoencoders and biased trajectories. J. Chem. Theory Comput. 2022, 18, 59–78.

    CAS  Google Scholar 

  271. Vani, B. P.; Aranganathan, A.; Wang, D. D.; Tiwary, P. From sequence to Boltzmann weighted ensemble of structures with AlphaFold2-RAVE. 2022, bioRxiv 2022.05.25.493365. https://doi.org/10.1101/2022.05.25.493365 (accessed May 26, 2022).

  272. Paul, T. K.; Taraphder, S. Coordination dynamics of zinc triggers the rate determining proton transfer in human carbonic anhydrase II. ChemPhysChem 2020, 21, 1455–1473.

    CAS  Google Scholar 

  273. Leyssale, J. M.; Valdenaire, P. L.; Potier, K.; Pellenq, R. J. M. Replica exchange molecular dynamics simulation of organic matter evolution: From lignin to overmature type III kerogen. Energy Fuels 2022, 36, 14723–14733.

    CAS  Google Scholar 

  274. Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613.

    CAS  Google Scholar 

  275. Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A. et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009, 180, 1961–1972.

    CAS  Google Scholar 

  276. Sidky, H.; Colón, Y. J.; Helfferich, J.; Sikora, B. J.; Bezik, C.; Chu, W. W.; Giberti, F.; Guo, A. Z.; Jiang, X. K.; Lequieu, J. et al. SSAGES: Software suite for advanced general ensemble simulations. J. Chem. Phys. 2018, 148, 044104.

    Google Scholar 

  277. Sultan, M. M.; Pande, V. S. tICA-metadynamics: Accelerating metadynamics by using kinetically selected collective variables. J. Chem. Theory Comput. 2017, 13, 2440–2447.

    Google Scholar 

  278. Ojha, A. A.; Thakur, S.; Ahn, S. H.; Amaro, R. E. DeepWEST: Deep learning of kinetic models with the Weighted Ensemble Simulation Toolkit for enhanced sampling. J. Chem. Theory Comput. 2023, 19, 1342–1359.

    CAS  Google Scholar 

  279. Mendels, D.; Piccini, G.; Parrinello, M. Collective variables from local fluctuations. J. Phys. Chem. Lett. 2018, 9, 2776–2781.

    CAS  Google Scholar 

  280. Piccini, G.; Parrinello, M. Accurate quantum chemical free energies at affordable cost. J. Phys. Chem. Lett. 2019, 10, 3727–3731.

    CAS  Google Scholar 

  281. Valsson, O.; Parrinello, M. Variational approach to enhanced sampling and free energy calculations. Phys. Rev. Lett. 2014, 113, 090601.

    CAS  Google Scholar 

  282. Bonati, L.; Zhang, Y. Y.; Parrinello, M. Neural networks-based variationally enhanced sampling. Proc. Natl. Acad. Sci. USA 2019, 116, 17641–17647.

    CAS  Google Scholar 

  283. Zhang, J.; Yang, Y. I.; Noé, F. Targeted adversarial learning optimized sampling. J. Phys. Chem. Lett. 2019, 10, 5791–5797.

    CAS  Google Scholar 

  284. Wu, H.; Mardt, A.; Pasquali, L.; Noe, F. Deep generative markov state models. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018, pp 3979–3988.

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000), the National Key R&D Program of China (no. 2022YFA1203200), the Natural Science Foundation of Beijing (Nos. 2222085, 1202023, and 2194092), and the National Natural Science Foundation of China (Nos. 11672079, 12072082, and 12125202). The authors thank the Hefei Advanced Computing Center for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhou, T. & Shi, X. Enhanced sampling in molecular dynamics simulations and their latest applications—A review. Nano Res. 16, 13474–13497 (2023). https://doi.org/10.1007/s12274-023-6311-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6311-9

Keywords

Navigation