Skip to main content

Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions

Abstract

The heterojunction of single-wall carbon nanotubes (SWCNTs) and perovskite quantum dots (QDs) shows excellent photodetection performances due to the combination of the advantages of high carrier mobility of SWCNTs and high absorption coefficient of perovskite QDs. However, the band structure of a SWCNT is determined by its atomic arrangement structure. How the structure of SWCNTs affects the photoelectric performance of the composite film remains elusive. Here, we systematically explored the diameter effect of SWCNTs with different bandgaps on the photodetection performances of SWCNTs/perovskite QDs heterojunction films by integrating semiconducting SWCNTs (s-SWCNTs) with different diameters with CsPbBr3 QDs. The results show that with an increase in diameter of s-SWCNTs, the heterojunction exhibits increasing responsivity (R), detectivity (D), and faster response time. The great improvement in the optoelectronic performances of devices should be attributed to the higher carrier mobility of larger-diameter SWCNT films and the increasing built-in electric field at the heterojunction interfaces between larger-diameter SWCNTs and CsPbBr3 QDs, which enhances the separation of the photogenerated excitons and the transport of the resulted carriers in SWCNT films.

This is a preview of subscription content, access via your institution.

References

  1. Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.

    Article  Google Scholar 

  2. Li, Z. H.; Xu, K.; Wei, F. N. Recent progress in photodetectors based on low-dimensional nanomaterials. Nanotechnol. Rev. 2018, 7, 393–411.

    Article  CAS  Google Scholar 

  3. Bai, P.; Li, X. H.; Yang, N.; Chu, W. D.; Bai, X. Q.; Huang, S. H.; Zhang, Y. H.; Shen, W. Z.; Fu, Z. L.; Shao, D. X. et al. Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector. Sci. Adv. 2022, 8, eabn2031.

    Article  CAS  Google Scholar 

  4. Liu, Y. J.; Liu, C.; Shen, K.; Sun, P.; Li, W. J.; Zhao, C. X.; Ji, Z.; Mai, Y. H.; Mai, W. J. Underwater multispectral computational imaging based on a broadband water-resistant Sb2Se3 heterojunction photodetector. ACS Nano 2022, 16, 5820–5829.

    Article  CAS  Google Scholar 

  5. Arora, K.; Kaur, K.; Kumar, M. Superflexible, self-biased, high-voltage-stable, and seal-packed office-paper based gallium-oxide photodetector. ACS Appl. Electron. Mater. 2021, 3, 1852–1863.

    Article  CAS  Google Scholar 

  6. Zhou, H. X.; Wang, J.; Ji, C. H.; Liu, X. C.; Han, J. Y.; Yang, M.; Gou, J.; Xu, J.; Jiang, Y. D. Polarimetric vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon 2019, 143, 844–850.

    Article  CAS  Google Scholar 

  7. He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

    Article  CAS  Google Scholar 

  8. Yin, H.; Zhang, L. X.; Zhu, M. K.; Chen, Y.; Tian, T.; Zhang, Y. F.; Hu, N. T.; Yang, Z.; Su, Y. J. High-performance visible–near-infrared single-walled carbon nanotube photodetectors via interfacial charge-transfer-induced improvement by surface doping. ACS Appl. Mater. Interfaces 2022, 14, 43628–43636.

    Article  CAS  Google Scholar 

  9. Liu, C. C.; Cao, Y.; Wang, B.; Zhang, Z. X.; Lin, Y. X.; Xu, L.; Yang, Y. J.; Jin, C. H.; Peng, L. M.; Zhang, Z. Y. Complementary transistors based on aligned semiconducting carbon nanotube arrays. ACS Nano 2022, 16, 21482–21490.

    Article  CAS  Google Scholar 

  10. Freitag, M.; Steiner, M.; Naumov, A.; Small, J. P.; Bol, A. A.; Perebeinos, V.; Avouris, P. Carbon nanotube photo- and electroluminescence in longitudinal electric fields. ACS Nano 2009, 3, 3744–3748.

    Article  CAS  Google Scholar 

  11. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

    Article  CAS  Google Scholar 

  12. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    Article  CAS  Google Scholar 

  13. Habisreutinger, S. N.; Noel, N. K.; Larson, B. W.; Reid, O. G.; Blackburn, J. L. Rapid charge-transfer cascade through SWCNT composites enabling low-voltage losses for perovskite solar cells. ACS Energy Lett. 2019, 4, 1872–1879.

    Article  CAS  Google Scholar 

  14. Geng, X. S.; Wang, F. W.; Tian, H.; Feng, Q. X.; Zhang, H. N.; Liang, R. R.; Shen, Y.; Ju, Z. Y.; Gou, G. Y.; Deng, N. Q. et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano 2020, 14, 2860–2868.

    Article  CAS  Google Scholar 

  15. Panigrahi, S.; Jana, S.; Calmeiro, T.; Nunes, D.; Martins, R.; Fortunato, E. Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano 2017, 11, 10214–10221.

    Article  CAS  Google Scholar 

  16. Fang, Y. J.; Dong, Q. F.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.

    Article  CAS  Google Scholar 

  17. Park, J. S.; Calbo, J.; Jung, Y. K.; Whalley, L. D.; Walsh, A. Accumulation of deep traps at grain boundaries in halide perovskites. ACS Energy Lett. 2019, 4, 1321–1327.

    Article  CAS  Google Scholar 

  18. She, X. J.; Chen, C.; Divitini, G.; Zhao, B. D.; Li, Y.; Wang, J. Z.; Orri, J. F.; Cui, L. S.; Xu, W. D.; Peng, J. et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat. Electron. 2020, 3, 694–703.

    Article  CAS  Google Scholar 

  19. Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

    Article  CAS  Google Scholar 

  20. Li, F.; Wang, H.; Kufer, D.; Liang, L. L.; Yu, W. L.; Alarousu, E.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Liu, C. X. et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 2017, 29, 1602432.

    Article  Google Scholar 

  21. Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

    Article  CAS  Google Scholar 

  22. Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.

    Article  CAS  Google Scholar 

  23. Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

    Article  CAS  Google Scholar 

  24. Liu, H. P.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270–9276.

    Article  CAS  Google Scholar 

  25. Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

    Article  Google Scholar 

  26. Yang, D. H.; Li, L. H.; Wei, X. J.; Wang, Y. C.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

    Article  CAS  Google Scholar 

  27. Yang, D. H.; Hu, J. W.; Liu, H. P.; Li, S. L.; Su, W.; Li, Q.; Zhou, N. G.; Wang, Y. C.; Zhou, W. Y.; Xie, S. S. et al. Structure sorting of large-diameter carbon nanotubes by NaOH tuning the interactions between nanotubes and gel. Adv. Funct. Mater. 2017, 27, 1700278.

    Article  Google Scholar 

  28. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  CAS  Google Scholar 

  29. Su, Y.; Chen, X. J.; Ji, W. Y.; Zeng, Q. H.; Ren, Z. Y.; Su, Z. S.; Liu, L. Highly controllable and efficient synthesis of mixed-halide CsPbX3 (X = Cl, Br, I) perovskite QDs toward the tunability of entire visible light. ACS Appl. Mater. Interfaces 2017, 9, 33020–33028.

    Article  CAS  Google Scholar 

  30. Su, W.; Yang, D. H.; Cui, J. M.; Wang, F. T.; Wei, X. J.; Zhou, W. Y.; Kataura, H.; Xie, S. S.; Liu, H. P. Ultrafast wafer-scale assembly of uniform and highly dense semiconducting carbon nanotube films for optoelectronics. Carbon 2020, 163, 370–378.

    Article  CAS  Google Scholar 

  31. Dag, S.; Gülseren, O.; Ciraci, S.; Yildirim, T. Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 2003, 83, 3180–3182.

    Article  CAS  Google Scholar 

  32. Li, Z.; Ouyang, J. Y.; Ding, J. F. Diameter-dependent semiconducting carbon nanotube network transistor performance. ACS Appl. Electron. Mater. 2022, 4, 6335–6344.

    Article  CAS  Google Scholar 

  33. Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

    Article  CAS  Google Scholar 

  34. Wu, X. H.; Zhou, B. L.; Zhou, J. C.; Chen, Y. T.; Chu, Y. L.; Huang, J. Distinguishable detection of ultraviolet, visible, and infrared spectrum with high-responsivity perovskite-based flexible photosensors. Small 2011, 14, 1800527.

    Article  Google Scholar 

  35. Zhou, G. G.; Sun, R.; Xiao, Y.; Abbas, G.; Peng, Z. C. A high-performance flexible broadband photodetector based on graphene-PTAA-perovskite heterojunctions. Adv. Electron. Mater. 2021, 7, 2000522.

    Article  CAS  Google Scholar 

  36. Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419–5424.

    Article  CAS  Google Scholar 

  37. Zou, C.; Xi, Y. Y.; Huang, C. Y.; Keeler, E. G.; Feng, T. Y.; Zhu, S. H.; Pozzo, L. D.; Lin, L. Y. A highly sensitive UV–vis–NIR all-inorganic perovskite quantum dot phototransistor based on a layered heterojunction. Adv. Opt. Mater. 2018, 6, 1800324.

    Article  Google Scholar 

  38. Ka, I.; Gerlein, L. F.; Asuo, I. M.; Nechache, R.; Cloutier, S. G. An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale 2018, 10, 9044–9052.

    Article  CAS  Google Scholar 

  39. Cao, Q.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Haensch, W. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. ACS Nano 2012, 6, 6471–6477.

    Article  CAS  Google Scholar 

  40. Asada, Y.; Miyata, Y.; Shiozawa, K.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 2011, 115, 270–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2020YFA0714700 and 2018YFA0208402), the National Natural Science Foundation of China (Nos. 51820105002, 51872320, 51472264, 11634014, and 52172060), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB33030100), the Key Research Program of Frontier Sciences, CAS (No. QYZDBSSW-SYS028), and the Youth Innovation Promotion Association of CAS (No. 2020005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Huang or Huaping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, W., Li, X. et al. Diameter-dependent photoelectric performances of semiconducting carbon nanotubes/perovskite heterojunctions. Nano Res. 16, 12662–12669 (2023). https://doi.org/10.1007/s12274-023-5942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5942-1

Keywords