Skip to main content

Nano-STING agonist-decorated microrobots boost innate and adaptive anti-tumor immunity

Abstract

Activating the cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) signaling has emerged as a promising anti-tumor strategy due to the important role of the pathway in innate and adaptive immunity, yet the selective delivery of STING agonists to tumors following systemic administration remains challenging. Herein, we develop a nano-STING agonist-decorated microrobot platform to achieve the enhanced anti-tumor effect. Fe ions and the STING agonist 2′3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) are co-encapsulated in the mitochondria-targeting nanoparticles (mTNPs), which can trigger the release of mitochondrial DNA (mtDNA) by Fenton reaction-induced mitochondria oxidative damage. The exogenous cGAMP and the endogenous mtDNA can work synergistically to induce potent cGAS/STING signaling activation. Furthermore, we decorate mTNPs onto Salmonella typhimurium VNP20009 (VNP) bacteria to facilitate tumor accumulation and deep penetration. We demonstrate that the systemic administration of this microrobot activates both innate and adaptive immunity, improving the immunotherapeutic efficacy of the STING agonists.

This is a preview of subscription content, access via your institution.

References

  1. Jerby-Arnon, L.; Shah, P.; Cuoco, M. S.; Rodman, C.; Su, M. J.; Melms, J. C.; Leeson, R.; Kanodia, A.; Mei, S. L.; Lin, J. R. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 2018, 175, 984–997.e24.

    Article  CAS  Google Scholar 

  2. Li, X. F.; Khorsandi, S.; Wang, Y. F.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M. M.; Lee, D.; Lu, Y. F.; Gao, R. Q. et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 2022, 17, 891–899.

    Article  CAS  Google Scholar 

  3. Motwani, M.; Pesiridis, S.; Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019, 20, 657–674.

    Article  CAS  Google Scholar 

  4. Barber, G. N. STING: Infection, inflammation and cancer.. Nat. Rev. Immunol. 2015, 15, 760–770.

    Article  CAS  Google Scholar 

  5. Li, L. Y.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J. L.; Wu, H.; Mitchison, T. J. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 2014, 10, 1043–1048.

    Article  CAS  Google Scholar 

  6. Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.

    Article  CAS  Google Scholar 

  7. Gao, D. X.; Li, T.; Li, X. D.; Chen, X.; Li, Q. Z.; Wight-Carter, M.; Chen, Z. J. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl. Acad. Sci. USA 2015, 112, E5699–E5705.

    Article  CAS  Google Scholar 

  8. Cheng, N.; Watkins-Schulz, R.; Junkins, R. D.; David, C. N.; Johnson, B. M.; Montgomery, S. A.; Peine, K. J.; Darr, D. B.; Yuan, H.; McKinnon, K. P. et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, 120638.

    Article  Google Scholar 

  9. Dane, E. L.; Belessiotis-Richards, A.; Backlund, C.; Wang, J. N.; Hidaka, K.; Milling, L. E.; Bhagchandani, S.; Melo, M. B.; Wu, S. W.; Li, N. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022, 21, 710–720.

    Article  CAS  Google Scholar 

  10. Zhang, Z. Y.; Liu, J.; Xiao, M.; Zhang, Q. F.; Liu, Z. H.; Liu, M. Y.; Zhang, P.; Zeng, Y. L. Peptide nanotube loaded with a STING agonist, c-di-GMP, enhance cancer immunotherapy against melanoma. Nano Res, in press, https://doi.org/10.1007/s12274-022-5102-z.

  11. Kato, K.; Nishimasu, H.; Oikawa, D.; Hirano, S.; Hirano, H.; Kasuya, G.; Ishitani, R.; Tokunaga, F.; Nureki, O. Structural insights into cGAMP degradation by ecto-nucleotide pyrophosphatase phosphodiesterase 1. Nat. Commun. 2018, 9, 4424.

    Article  Google Scholar 

  12. Diner, E. J.; Burdette, D. L.; Wilson, S. C.; Monroe, K. M.; Kellenberger, C. A.; Hyodo, M.; Hayakawa, Y.; Hammond, M. C.; Vance, R. E. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013, 3, 1355–1361.

    Article  CAS  Google Scholar 

  13. Cen, D.; Ge, Q. W.; Xie, C. K.; Zheng, Q.; Guo, J. S.; Zhang, Y. Q.; Wang, Y. F.; Li, X.; Gu, Z.; Cai, X. J. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy. Adv. Mater. 2021, 33, 2104037.

    Article  CAS  Google Scholar 

  14. Zhao, M.; Wang, Y. Z.; Li, L.; Liu, S. Y.; Wang, C. S.; Yuan, Y. J.; Yang, G.; Chen, Y. N.; Cheng, J. Q.; Lu, Y. R. et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics 2021, 11, 1845–1863.

    Article  CAS  Google Scholar 

  15. Yang, B. W.; Ding, L.; Yao, H. L.; Chen, Y.; Shi, J. L. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Adv. Mater. 2020, 32, 1907152.

    Article  CAS  Google Scholar 

  16. Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

    Article  CAS  Google Scholar 

  17. Yang, N.; Zhang, T.; Cao, C. Y.; Mao, G. X.; Shao, J. J.; Song, X. J.; Wang, W. J.; Mou, X. Z.; Dong, X. C. BSA stabilized photothermal-Fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res 2022, 15, 2235–2243.

    Article  CAS  Google Scholar 

  18. Wang, Y. D.; Gao, F. C.; Li, X. F.; Niu, G. M.; Yang, Y. F.; Li, H.; Jiang, Y. Y. Tumor microenvironment-responsive Fenton nanocatalysts for intensified anticancer treatment. J. Nanobiotechnol. 2022, 20, 69.

    Article  CAS  Google Scholar 

  19. Zhan, M. X.; Yu, X. R.; Zhao, W.; Peng, Y. J.; Peng, S. J.; Li, J. C.; Lu, L. G. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy. J. Nanobiotechnol. 2022, 20, 23.

    Article  CAS  Google Scholar 

  20. Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219.

    Article  CAS  Google Scholar 

  21. Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.

    Article  CAS  Google Scholar 

  22. Li, Z. T.; Wang, Y. X.; Liu, J.; Rawding, P.; Bu, J.; Hong, S.; Hu, Q. Y. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Adv. Mater. 2021, 33, 2102580.

    Article  CAS  Google Scholar 

  23. Ni, J.; Zhou, H. L.; Gu, J. Y.; Liu, X. P.; Chen, J.; Yi, X.; Yang, K. Bacteria-assisted delivery and oxygen production of nano-enzyme for potent radioimmunotherapy of cancer. Nano Res 2022, 15, 7355–7365.

    Article  CAS  Google Scholar 

  24. Wang, W. G.; Xu, H. H.; Ye, Q. S.; Tao, F.; Wheeldon, I.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat. Biomed. Eng. 2022, 6, 44–53.

    Article  CAS  Google Scholar 

  25. Chen, W. F.; Guo, Z. F.; Zhu, Y. N.; Qiao, N.; Zhang, Z. R.; Sun, X. Combination of bacterial-photothermal therapy with an anti-PD-1 peptide depot for enhanced immunity against advanced cancer. Adv. Funct. Mater. 2020, 30, 1906623.

    Article  CAS  Google Scholar 

  26. Cheng, K. M.; Zhao, R. F.; Li, Y.; Qi, Y. Q.; Wang, Y. Z.; Zhang, Y. L.; Qin, H.; Qin, Y. T.; Chen, L.; Li, C. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 2021, 12, 2041.

    Article  CAS  Google Scholar 

  27. Yue, Y. L.; Xu, J. Q.; Li, Y.; Cheng, K. M.; Feng, Q. Q.; Ma, X. T.; Ma, N. N.; Zhang, T. J.; Wang, X. W.; Zhao, X. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 2022, 6, 898–909.

    Article  CAS  Google Scholar 

  28. Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. C.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

    Article  CAS  Google Scholar 

  29. Marcus, A.; Mao, A. J.; Lensink-Vasan, M.; Wang, L.; Vance, R. E.; Raulet, D. H. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 2018, 49, 754–763.e4.

    Article  CAS  Google Scholar 

  30. Shen, M.; Chen, C. R.; Guo, Q. Q.; Wang, Q.; Liao, J. H.; Wang, L. T.; Yu, J.; Xue, M.; Duan, Y. R.; Zhang, J. L. Systemic delivery of mPEG-masked trispecific T-cell nanoengagers in synergy with STING agonists overcomes immunotherapy resistance in TNBC and generates a vaccination effect.. Adv. Sci. 2022, 9, e2203523.

    Article  Google Scholar 

  31. Leventhal, D. S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S. A.; Gallant, C. W.; Christmas, R.; Gao, J. R.; James, M. J.; Abin-Fuentes, A. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 2020, 11, 2739.

    Article  CAS  Google Scholar 

  32. Hayman, T. J.; Baro, M.; MacNeil, T.; Phoomak, C.; Aung, T. N.; Cui, W.; Leach, K.; Iyer, R.; Challa, S.; Sandoval-Schaefer, T. et al. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat. Commun. 2021, 12, 2327.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Dr. Glen Kwon lab for the help with nanoparticle characterization. We also want to thank optical imaging core, small animal facilities, flow cytometry core, and histological core in the University of Wisconsin-Madison for their help with this study. This work was supported by the start-up package from the University of Wisconsin-Madison (to Q. Y. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanyin Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Z., Chen, Y. et al. Nano-STING agonist-decorated microrobots boost innate and adaptive anti-tumor immunity. Nano Res. 16, 9848–9858 (2023). https://doi.org/10.1007/s12274-023-5737-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5737-4

Keywords