Skip to main content
Log in

Ultrafast growth of wafer-scale fold-free bilayer graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bilayer graphene provides a versatile platform for exploring a variety of intriguing phenomena and shows much promise for applications in electronics, optoelectronics, etc. Controlled growth of large-area bilayer graphene is therefore highly desired yet still suffers from a slow growth rate and poor layer uniformity. Meanwhile, graphene wrinkles, including folds and ripples, form during cooling due to the thermal contraction mismatch between graphene and the metal substrates, and have been far from suppressed or eliminated, especially in bilayer graphene, which would greatly degrade the extraordinary properties of graphene. Here we report the ultrafast growth of wafer-scale fold-free bilayer graphene by chemical vapor deposition. Through well-tuning the alloy thickness and strain regulation of the single-crystal CuNi(111)/sapphire, the full coverage of a 2-inch fold-free bilayer graphene wafer via mainly isothermal segregation has been achieved as fast as 30 s. The tensile-strained CuNi(111) film reduces the thermal contraction mismatch and suppresses the formation of graphene folds during cooling, which is directly observed through in situ optical microscopy. The ultraflat bilayer graphene exhibits wafer-scale uniformity in electrical performance and enhanced mechanical property comparable to the exfoliated ones. Our results offer a promising route for large-scale production of bilayer graphene and enable its various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  Google Scholar 

  2. Lin, Q. Y.; Zeng, Y. H.; Liu, D.; Jing, G. Y.; Liao, Z. M.; Yu, D. P. Step-by-step fracture of two-layer stacked graphene membranes. ACS Nano 2014, 8, 10246–10251.

    Article  CAS  Google Scholar 

  3. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  CAS  Google Scholar 

  4. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  5. Nguyen, V. L.; Perello, D. J.; Lee, S.; Nai, C. T.; Shin, B. G.; Kim, J. G.; Park, H. Y.; Jeong, H. Y.; Zhao, J.; Vu, Q. A. et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 2016, 28, 8177–8183.

    Article  CAS  Google Scholar 

  6. Liu, L. X.; Zhou, H. L.; Cheng, R.; Yu, W. J.; Liu, Y.; Chen, Y.; Shaw, J.; Zhong, X.; Huang, Y.; Duan, X. F. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 2012, 6, 8241–8249.

    Article  CAS  Google Scholar 

  7. Wang, H. Z.; Yao, Z. P.; Jung, G. S.; Song, Q. C.; Hempel, M.; Palacios, T.; Chen, G.; Buehler, M. J.; Aspuru-Guzik, A.; Kong, J. Frank-van der Merwe growth in bilayer graphene. Matter 2021, 4, 3339–3353.

    Article  CAS  Google Scholar 

  8. Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.

    Article  CAS  Google Scholar 

  9. Takesaki, Y.; Kawahara, K.; Hibino, H.; Okada, S.; Tsuji, M.; Ago, H. Highly uniform bilayer graphene on epitaxial Cu-Ni(111) alloy. Chem. Mater. 2016, 28, 4583–4592.

    Article  CAS  Google Scholar 

  10. Gao, Z. L.; Zhang, Q. C.; Naylor, C. H.; Kim, Y.; Abidi, I. H.; Ping, J. L.; Ducos, P.; Zauberman, J.; Zhao, M. Q.; Rappe, A. M. et al. Crystalline bilayer graphene with preferential stacking from Ni-Cu gradient alloy. ACS Nano 2018, 12, 2275–2282.

    Article  CAS  Google Scholar 

  11. Huang, M.; Bakharev, P. V.; Wang, Z. J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y. Q.; Qu, D. S. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 2020, 15, 289–295.

    Article  CAS  Google Scholar 

  12. Solis-Fernandez, P.; Terao, Y.; Kawahara, K.; Nishiyama, W.; Uwanno, T.; Lin, Y. C.; Yamamoto, K.; Nakashima, H.; Nagashio, K.; Hibino, H. et al. Isothermal growth and stacking evolution in highly uniform bernal-stacked bilayer graphene. ACS Nano 2020, 14, 6834–6844.

    Article  CAS  Google Scholar 

  13. Nguyen, V. L.; Duong, D. L.; Lee, S. H.; Avila, J.; Han, G.; Kim, Y. M.; Asensio, M. C.; Jeong, S. Y.; Lee, Y. H. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. Nat. Nanotechnol. 2020, 15, 861–867.

    Article  CAS  Google Scholar 

  14. Ma, W.; Chen, M. L.; Yin, L. C.; Liu, Z. B.; Li, H.; Xu, C.; Xin, X.; Sun, D. M.; Cheng, H. M.; Ren, W. C. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 2019, 10, 2809.

    Article  Google Scholar 

  15. Zhu, W. J.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H. G.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

    Article  CAS  Google Scholar 

  16. Deng, B.; Pang, Z. Q.; Chen, S. L.; Li, X.; Meng, C. X.; Li, J. Y.; Liu, M. X.; Wu, J. X.; Qi, Y.; Dang, W. H. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 2017, 11, 12337–12345.

    Article  CAS  Google Scholar 

  17. Chen, S. S.; Li, Q. Y.; Zhang, Q. M.; Qu, Y.; Ji, H. X.; Ruoff, R. S.; Cai, W. W. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 2012, 23, 365701.

    Article  Google Scholar 

  18. Deng, B.; Hou, Y.; Liu, Y.; Khodkov, T.; Goossens, S.; Tang, J. L.; Wang, Y. N.; Yan, R.; Du, Y.; Koppens, F. H. L. et al. Growth of ultraflat graphene with greatly enhanced mechanical properties. Nano Lett. 2020, 20, 6798–6806.

    Article  CAS  Google Scholar 

  19. Zhang, Y. H.; Wang, B.; Zhang, H. R.; Chen, Z. Y.; Zhang, Y. Q.; Wang, B.; Sui, Y. P.; Li, X. L.; Xie, X. M.; Yu, G. H. et al. The distribution of wrinkles and their effects on the oxidation resistance of chemical vapor deposition graphene. Carbon 2014, 70, 81–86.

    Article  CAS  Google Scholar 

  20. Wang, B.; Huang, M.; Tao, L.; Lee, S. H.; Jang, A. R.; Li, B. W.; Shin, H. S.; Akinwande, D.; Ruoff, R. S. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 2016, 10, 1404–1410.

    Article  CAS  Google Scholar 

  21. Deng, B.; Wu, J. X.; Zhang, S. S.; Qi, Y.; Zheng, L. M.; Yang, H.; Tang, J. L.; Tong, L. M.; Zhang, J.; Liu, Z. F. et al. Anisotropic strain relaxation of graphene by corrugation on copper crystal surfaces. Small 2018, 14, 1800725.

    Article  Google Scholar 

  22. Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M. R.; Chatterjee, S. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524.

    Article  CAS  Google Scholar 

  23. Yi, D.; Luo, D.; Wang, Z. J.; Dong, J. C.; Zhang, X.; Willinger, M. G.; Ruoff, R. S.; Ding, F. What drives metal-surface step bunching in graphene chemical vapor deposition. Phys. Rev. Lett. 2018, 120, 246101.

    Article  CAS  Google Scholar 

  24. Lee, J. H.; Lee, E. K.; Joo, W. J.; Jang, Y.; Kim, B. S.; Lim, J. Y.; Choi, S. H.; Ahn, S. J.; Ahn, J. R.; Park, M. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    Article  CAS  Google Scholar 

  25. Choi, J. K.; Kwak, J.; Park, S. D.; Yun, H. D.; Kim, S. Y.; Jung, M.; Kim, S. Y.; Park, K.; Kang, S.; Kim, S. D. et al. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. ACS Nano 2015, 9, 679–686.

    Article  CAS  Google Scholar 

  26. Zhang, X. F.; Wu, T. R.; Jiang, Q.; Wang, H. S.; Zhu, H. L.; Chen, Z. Y.; Jiang, R.; Niu, T. C.; Li, Z. J.; Zhang, Y. W. et al. Epitaxial growth of 6 in. Single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small 2019, 15, 1805395.

    Article  Google Scholar 

  27. Kang, J. H.; Moon, J.; Kim, D. J.; Kim, Y.; Jo, I.; Jeon, C.; Lee, J.; Hong, B. H. Strain relaxation of graphene layers by Cu surface roughening. Nano Lett. 2016, 16, 5993–5998.

    Article  CAS  Google Scholar 

  28. Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: Surface phase transition. Surf. Sci. 1974, 43, 493–520.

    Article  CAS  Google Scholar 

  29. Gong, P.; Tang, C.; Wang, B. R.; Xiao, T. S.; Zhu, H.; Li, Q. W.; Sun, Z. Z. Precise CO2 reduction for bilayer graphene. ACS Cent. Sci. 2022, 8, 394–401.

    Article  CAS  Google Scholar 

  30. Yim, W. M.; Paff, R. J. Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 1974, 45, 1456–1457.

    Article  CAS  Google Scholar 

  31. Suh, I. K.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. J. Mater. Sci. 1988, 23, 757–760.

    Article  CAS  Google Scholar 

  32. Zeller, P.; Weinl, M.; Speck, F.; Ostler, M.; Henss, A. K.; Seyller, T.; Schreck, M.; Wintterlin, J. Single crystalline metal films as substrates for graphene growth. Ann. Der Phys. 2017, 529, 1700023.

    Article  Google Scholar 

  33. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  34. Lee, C.; Wei, X. D.; Li, Q. Y.; Carpick, R.; Kysar, J. W.; Hone, J. Elastic and frictional properties of graphene. Phys. Status Solidi B 2009, 246, 2562–2567.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52021006, T2188101, and 22105009), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), and the Tencent Foundation (No. XPLORER PRIZE). We acknowledge Molecular Materials and Nanofabrication Laboratory (MMNL) in the College of Chemistry at Peking University for the use of instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Liu or Hailin Peng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wang, Y., Ma, Y. et al. Ultrafast growth of wafer-scale fold-free bilayer graphene. Nano Res. 16, 10684–10689 (2023). https://doi.org/10.1007/s12274-023-5697-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5697-8

Keywords

Navigation