Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Nano Research
  3. Article
Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform

05 October 2018

Prashant Agrawal, Kyle J. Bachus, … Richard D. Oleschuk

Electrohydrodynamic instability: effect of rheological characteristics on the morphological evolution of liquid crystal–polymer interface

25 July 2020

Pritam Roy & Partho Sarathi Gooh Pattader

Self-propelled droplet transport on shaped-liquid surfaces

11 September 2020

Gaby Launay, Muhammad Subkhi Sadullah, … Gary G. Wells

Deformation hysteresis of a water nano-droplet in an electric field

10 September 2019

Fenhong Song, Dapeng Ju, … Qingzhen Yang

Droplet evaporation dynamics on microstructured biphilic, hydrophobic, and smooth surfaces

05 July 2021

A. Alperen Günay, Moon-Kyung Kim, … Soumyadip Sett

Nanoparticle surfactants and structured liquids

19 September 2020

Shuyi Sun, Tan Liu, … Thomas P. Russell

Electrically modulated droplet impingement onto hydrophilic and (super)hydrophobic solid surfaces

06 March 2020

Danial Khojasteh, Mohammad Karim Dehghan Manshadi, … Alireza Bordbar

Fluid transportation by droplets impacting wettability-controlled surfaces at the nanoscale: a molecular dynamics simulation study

08 November 2022

Ya-Nan Dong, Ning-Ning Han, … Xin He

Directional droplet transport on switchable ratchets by mechanowetting

30 March 2022

Edwin De Jong, Jaap M. J. Den Toonder & Patrick R. Onck

Download PDF
  • Research Article
  • Published: 21 December 2022

Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces

  • Yang Xu1,
  • Yuxing Yao2,
  • Weichen Deng1,
  • Jen-Chun Fang1,
  • Robert L. Dupont1,
  • Meng Zhang1,
  • Simon Čopar3,
  • Uroš Tkalec4,5,6 &
  • …
  • Xiaoguang Wang1,7 

Nano Research (2022)Cite this article

  • 241 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4′-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Xu, W. H.; Zheng, H. X.; Liu, Y.; Zhou, X. F.; Zhang, C.; Song, Y. X.; Deng, X.; Leung, M.; Yang, Z. B.; Xu, R. X. et al. A droplet-based electricity generator with high instantaneous power density. Nature 2020, 578, 392–396.

    Article  CAS  Google Scholar 

  2. Guo, Z. Q.; Zhang, L.; Monga, D.; Stone, H. A.; Dai, X. M. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Rep. Phys. Sci. 2021, 2, 100387.

    Article  CAS  Google Scholar 

  3. Chen, H. W.; Ran, T.; Gan, Y.; Zhou, J. J.; Zhang, Y.; Zhang, L. W.; Zhang, D. Y.; Jiang, L. Ultrafast water harvesting and transport in hierarchical microchannels. Nat. Mater. 2018, 17, 935–942.

    Article  CAS  Google Scholar 

  4. Dai, X. M.; Sun, N.; Nielsen, S. O.; Stogin, B. B.; Wang, J.; Yang, S. K.; Wong, T. S. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 2018, 4, eaaq0919.

    Article  Google Scholar 

  5. Maji, K.; Das, A.; Dhar, M.; Manna, U. Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications. J. Mater. Chem. A 2020, 8, 25040–25046.

    Article  CAS  Google Scholar 

  6. Shang, L. R.; Cheng, Y.; Zhao, Y. J. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040.

    Article  CAS  Google Scholar 

  7. Kaminski, T. S.; Garstecki, P. Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 2017, 46, 6210–6226.

    Article  CAS  Google Scholar 

  8. Jiang, J. K.; Gao, J.; Zhang, H. D.; He, W. Q.; Zhang, J. Q.; Daniel, D.; Yao, X. Directional pumping of water and oil microdroplets on slippery surface. Proc. Natl. Acad. Sci. USA 2019, 116, 2482–2487.

    Article  CAS  Google Scholar 

  9. Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

    Article  CAS  Google Scholar 

  10. Manna, U.; Lynn, D. M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: Principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces. Adv. Mater. 2015, 27, 3007–3012.

    Article  CAS  Google Scholar 

  11. Hou, X.; Zhang, Y. S.; Santiago, G. T. D.; Alvarez, M. M.; Ribas, J.; Jonas, S. J.; Weiss, P. S.; Andrews, A. M.; Aizenberg, J.; Khademhosseini, A. Interplay between materials and microfluidics. Nat. Rev. Mater. 2017, 2, 17016.

    Article  CAS  Google Scholar 

  12. Su, B.; Wang, S. T.; Song, Y. L.; Jiang, L. A miniature droplet reactor built on nanoparticle-derived superhydrophobic pedestals. Nano Res. 2010, 4, 266–273.

    Article  Google Scholar 

  13. Wei, Y. Y.; Cheng, G. Y.; Ho, H. P.; Ho, Y. P.; Yong, K. T. Thermodynamic perspectives on liquid-liquid droplet reactors for biochemical applications. Chem. Soc. Rev. 2020, 49, 6555–6567.

    Article  CAS  Google Scholar 

  14. Yao, Y. X.; Bennett, R. K. A.; Xu, Y.; Rather, A. M.; Li, S. C.; Cheung, T. C.; Bhanji, A.; Kreder, M. J.; Daniel, D.; Adera, S. et al. Wettability-based ultrasensitive detection of amphiphiles through directed concentration at disordered regions in self-assembled monolayers. Proc. Natl. Acad. Sci. USA 2022, 119, e2211042119.

    Article  CAS  Google Scholar 

  15. Li, W.; Tang, X.; Wang, L. Q. Photopyroelectric microfluidics. Sci. Adv. 2020, 6, eabc1693.

    Article  CAS  Google Scholar 

  16. Gao, Z. F.; Liu, R.; Wang, J. H.; Dai, J.; Huang, W. H.; Liu, M. J.; Wang, S. T.; Xia, F.; Jiang, L. Controlling droplet motion on an organogel surface by tuning the chain length of DNA and its biosensing application. Chem 2018, 4, 2929–2943.

    Article  CAS  Google Scholar 

  17. Courtney, M.; Chen, X. M.; Chan, S.; Mohamed, T.; Rao, P. P. N.; Ren, C. L. Droplet microfluidic system with on-demand trapping and releasing of droplet for drug screening applications. Anal. Chem. 2017, 89, 910–915.

    Article  CAS  Google Scholar 

  18. Li, A.; Li, H. Z.; Li, Z.; Zhao, Z. P.; Li, K. Z.; Li, M. Z.; Song, Y. L. Programmable droplet manipulation by a magnetic-actuated robot. Sci. Adv. 2020, 6, eaay5808.

    Article  CAS  Google Scholar 

  19. Wang, C.; Wang, D. Y.; Miao, W. N.; Shi, L. X.; Wang, S. T.; Tian, Y.; Jiang, L. Bioinspired ultrafast-responsive nanofluidic system for ion and molecule transport with speed control. ACS Nano 2020, 14, 12614–12620.

    Article  CAS  Google Scholar 

  20. Zhan, Y. Y.; Zhou, G. F.; Lamers, B. A. G.; Visschers, F. L. L.; Hendrix, M. M. R. M.; Broer, D. J.; Liu, D. Q. Artificial organic skin wets its surface by field-induced liquid secretion. Matter 2020, 3, 782–793.

    Article  Google Scholar 

  21. Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F. Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.

    Article  CAS  Google Scholar 

  22. Park, K. C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J. C.; Aizenberg, J. Condensation on slippery asymmetric bumps. Nature 2016, 531, 78–82.

    Article  CAS  Google Scholar 

  23. Ju, J.; Bai, H.; Zheng, Y. M.; Zhao, T. Y.; Fang, R. C.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247.

    Article  Google Scholar 

  24. Tang, X.; Li, W.; Wang, L. Q. Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 2021, 16, 1106–1112.

    Article  CAS  Google Scholar 

  25. Jin, Y. K.; Xu, W. H.; Zhang, H. H.; Li, R. R.; Sun, J.; Yang, S. Y.; Liu, M. J.; Mao, H. Y.; Wang, Z. K. Electrostatic tweezer for droplet manipulation. Proc. Natl. Acad. Sci. USA 2022, 119, e2105459119.

    Article  CAS  Google Scholar 

  26. Guo, T. Q.; Che, P. D.; Heng, L. P.; Fan, L. Z.; Jiang, L. Anisotropic slippery surfaces: Electric-driven smart control of a drop’s slide. Adv. Mater. 2016, 28, 6999–7007.

    Article  CAS  Google Scholar 

  27. Zhang, P. R.; Chen, C. Y.; Su, X. Y.; Mai, J.; Gu, Y. Y.; Tian, Z. H.; Zhu, H. D.; Zhong, Z. W.; Fu, H.; Yang, S. J. et al. Acoustic streaming vortices enable contactless, digital control of droplets. Sci. Adv. 2020, 6, eaba0606.

    Article  Google Scholar 

  28. Collignon, S.; Friend, J.; Yeo, L. Planar microfluidic drop splitting and merging. Lab Chip 2015, 15, 1942–1951.

    Article  CAS  Google Scholar 

  29. Wang, F.; Liu, M. J.; Liu, C.; Zhao, Q. L.; Wang, T.; Wang, Z. K.; Du, Z. M. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369.

    Article  CAS  Google Scholar 

  30. Tang, X.; Wang, L. Q. Loss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfaces. ACS Nano 2018, 12, 8994–9004.

    Article  CAS  Google Scholar 

  31. Timonen, J. V. I.; Latikka, M.; Leibler, L.; Ras, R. H. A.; Ikkala, O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 2013, 341, 253–257.

    Article  CAS  Google Scholar 

  32. Liu, X. B.; Kent, N.; Ceballos, A.; Streubel, R.; Jiang, Y. F.; Chai, Y.; Kim, P. Y.; Forth, J.; Hellman, F.; Shi, S. W. et al. Reconfigurable ferromagnetic liquid droplets. Science 2019, 365, 264–267.

    Article  CAS  Google Scholar 

  33. Zhang, J. Q.; Wang, X. J.; Wang, Z. Y.; Pan, S. F.; Yi, B.; Ai, L. Q.; Gao, J.; Mugele, F.; Yao, X. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat. Commun. 2021, 12, 7136.

    Article  CAS  Google Scholar 

  34. Feng, L.; He, X. Y.; Zhu, J. L.; Shi, W. Y. Magnetic manipulation of diamagnetic droplet on slippery liquid-infused porous surface. Phys. Rev. Fluids 2022, 7, 053602.

    Article  Google Scholar 

  35. Roy, P. K.; Bormashenko, E.; Frenkel, M.; Legchenkova, I.; Shoval, S. Magnetic field induced motion of water droplets and bubbles on the lubricant coated surface. Colloid Surf. A 2020, 597, 124773.

    Article  CAS  Google Scholar 

  36. Volk, A. A.; Epps, R. W.; Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: Toward autonomous robotic experimentation. Adv. Mater. 2021, 33, 2004495.

    Article  CAS  Google Scholar 

  37. Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grinthal, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

    Article  CAS  Google Scholar 

  38. Guo, P.; Wang, Z. B.; Heng, L. P.; Zhang, Y. Q.; Wang, X.; Jiang, L. Magnetocontrollable droplet and bubble manipulation on a stable amphibious slippery gel surface. Adv. Funct. Mater. 2019, 29, 1808717.

    Article  Google Scholar 

  39. Lou, X. D.; Huang, Y.; Yang, X.; Zhu, H.; Heng, L. P.; Xia, F. External stimuli responsive liquid-infused surfaces switching between slippery and nonslippery states: Fabrications and applications. Adv. Funct. Mater. 2020, 30, 1901130.

    Article  CAS  Google Scholar 

  40. Demus, D.; Goodby, J.; Gray, G. W.; Spiess, H. W.; Vill, V. Handbook of Liquid Crystals: Low Molecular Weight Liquid Crystals I; Wiley-VCH Verlag GmbH: New York, 1998.

    Book  Google Scholar 

  41. Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 1997, 27, 305–379.

    Article  CAS  Google Scholar 

  42. Bukusoglu, E.; Pantoja, M. B.; Mushenheim, P. C.; Wang, X. G.; Abbott, N. L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 163–196.

    Article  CAS  Google Scholar 

  43. Kim, Y. K.; Wang, X. G.; Mondkar, P.; Bukusoglu, E.; Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 2018, 557, 539–544.

    Article  CAS  Google Scholar 

  44. Kim, I.; Ansari, M. A.; Mehmood, M. Q.; Kim, W. S.; Jang, J.; Zubair, M.; Kim, Y. K.; Rho, J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater. 2020, 32, 2004664.

    Article  CAS  Google Scholar 

  45. Turiv, T.; Koizumi, R.; Thijssen, K.; Genkin, M. M.; Yu, H.; Peng, C. H.; Wei, Q. H.; Yeomans, J. M.; Aranson, I. S.; Doostmohammadi, A. et al. Polar jets of swimming bacteria condensed by a patterned liquid crystal. Nat. Phys. 2020, 16, 481–487.

    Article  CAS  Google Scholar 

  46. Xu, Y.; Rather, A. M.; Song, S.; Fang, J. C.; Dupont, R. L.; Kara, U. I.; Chang, Y.; Paulson, J. A.; Qin, R. J.; Bao, X. P. et al. Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Rep. Phys. Sci. 2020, 1, 100276.

    Article  CAS  Google Scholar 

  47. Kléman, M.; Lavrentovich, O. D. Soft Matter Physics: An Introduction; Springer: New York, 2003

    Google Scholar 

  48. Turiv, T.; Lazo, I.; Brodin, A.; Lev, B. I.; Reiffenrath, V.; Nazarenko, V. G.; Lavrentovich, O. D. Effect of collective molecular reorientations on brownian motion of colloids in nematic liquid crystal. Science 2013, 342, 1351–1354.

    Article  CAS  Google Scholar 

  49. Xu, Y.; Rather, A. M.; Yao, Y. X.; Fang, J. C.; Mamtani, R. S.; Bennett, R. K. A.; Atta, R. G.; Adera, S.; Tkalec, U.; Wang, X. G. Liquid crystal-based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Sci. Adv. 2021, 7, eabi7607.

    Article  CAS  Google Scholar 

  50. Xu, Y.; Chang, Y.; Yao, Y. X.; Zhang, M.; Dupont, R. L.; Rather, A. M.; Bao, X. P.; Wang, X. G. Modularizable liquid-crystal-based open surfaces enable programmable chemical transport and feeding using liquid droplets. Adv. Mater. 2022, 34, 2108788.

    Article  CAS  Google Scholar 

  51. K&J Magnetics, Inc [Online]. https://www.kjmagnetics.com/. (Accessed on Oct 29, 2022).

  52. Gim, M. J.; Beller, D. A.; Yoon, D. K. Morphogenesis of liquid crystal topological defects during the nematic-smectic a phase transition. Nat. Commun. 2017, 8, 15453.

    Article  CAS  Google Scholar 

  53. Honglawan, A.; Beller, D. A.; Cavallaro, M. Jr.; Kamien, R. D.; Stebe, K. J.; Yang, S. Topographically induced hierarchical assembly and geometrical transformation of focal conic domain arrays in smectic liquid crystals. Proc. Natl. Acad. Sci. USA 2013, 110, 34–39.

    Article  CAS  Google Scholar 

  54. Yoon, D. K.; Deb, R.; Chen, D.; Körblova, E.; Shao, R. F.; Ishikawa, K.; Rao, N. V. S.; Walba, D. M.; Smalyukh, I. I.; Clark, N. A. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc. Natl. Acad. Sci. USA 2010, 107, 21311–21315.

    Article  CAS  Google Scholar 

  55. Zappone, B.; Meyer, C.; Bruno, L.; Lacaze, E. Periodic lattices of frustrated focal conic defect domains in smectic liquid crystal films. Soft Matter 2012, 8, 4318–4326.

    Article  CAS  Google Scholar 

  56. Rather, A. M.; Xu, Y.; Chang, Y.; Dupont, R. L.; Borbora, A.; Kara, U. I.; Fang, J. C.; Mamtani, R.; Zhang, M.; Yao, Y. X. et al. Stimuli-responsive liquid-crystal-infused porous surfaces for manipulation of underwater gas bubble transport and adhesion. Adv. Mater. 2022, 34, 2110085.

    Article  CAS  Google Scholar 

  57. Gao, N.; Geyer, F.; Pilat, D. W.; Wooh, S.; Vollmer, D.; Butt, H. J.; Berger, R. How drops start sliding over solid surfaces. Nat. Phys. 2018, 14, 191–196.

    Article  CAS  Google Scholar 

  58. Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.

    Article  CAS  Google Scholar 

  59. Sun, L. Y.; Bian, F. K.; Wang, Y.; Wang, Y. T.; Zhang, X. X.; Zhao, Y. J. Bioinspired programmable wettability arrays for droplets manipulation. Proc. Natl. Acad. Sci. USA 2020, 117, 4527–4532.

    Article  CAS  Google Scholar 

  60. Wang, B. L.; Heng, L. P.; Jiang, L. Temperature-responsive anisotropic slippery surface for smart control of the droplet motion. ACS Appl. Mater. Interfaces 2018, 10, 7442–7450.

    Article  CAS  Google Scholar 

  61. Kreder, M. J.; Daniel, D.; Tetreault, A.; Cao, Z. L.; Lemaire, B.; Timonen, J. V. I.; Aizenberg, J. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Phys. Rev. X 2018, 8, 031053.

    CAS  Google Scholar 

  62. Daniel, D.; Timonen, J. V. I.; Li, R. P.; Velling, S. J.; Aizenberg, J. Oleoplaning droplets on lubricated surfaces. Nat. Phys. 2017, 13, 1020–1025.

    Article  CAS  Google Scholar 

  63. Smith, J. D.; Dhiman, R.; Anand, S.; Reza-Garduno, E.; Cohen, R. E.; McKinley, G. H.; Varanasi, K. K. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 2013, 9, 1772–1780.

    Article  CAS  Google Scholar 

  64. Xu, W.; Choi, C. H. From sticky to slippery droplets: Dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett. 2012, 109, 024504.

    Article  Google Scholar 

  65. Malinowski, R.; Parkin, I. P.; Volpe, G. Advances towards programmable droplet transport on solid surfaces and its applications. Chem. Soc. Rev. 2020, 49, 7879–7892.

    Article  CAS  Google Scholar 

  66. Gao, L. C.; McCarthy, T. J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237.

    Article  CAS  Google Scholar 

  67. De Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves; Springer: New York, 2004.

    Book  Google Scholar 

  68. Daniel, D.; Timonen, J. V. I.; Li, R. P.; Velling, S. J.; Kreder, M. J.; Tetreault, A.; Aizenberg, J. Origins of extreme liquid repellency on structured, flat, and lubricated hydrophobic surfaces. Phys. Rev. Lett. 2018, 120, 244503.

    Article  CAS  Google Scholar 

  69. Landau, L.; Levich, B. Dragging of a liquid by a moving plate. In Dynamics of Curved Fronts. Pelcé, P., Ed.; Academic Press: Boston, 1988, 141–153.

    Chapter  Google Scholar 

  70. Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

    Article  CAS  Google Scholar 

  71. De Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Clarendon Press; Oxford University Press: Oxford, 1993.

    Google Scholar 

  72. Chmielewski, A. G. Viscosity coefficients of some nematic liquid crystals. Mol. Cryst. Liq. Cryst. 1986, 132, 339–352.

    Article  CAS  Google Scholar 

  73. Mottram, N. J.; Hogan, S. J. Magnetic field-induced changes in molecular order in nematic liquid crystals. Continuum Mech. Thermodyn. 2002, 14, 281–295.

    Article  CAS  Google Scholar 

  74. Concellón, A.; Zentner, C. A.; Swager, T. M. Dynamic complex liquid crystal emulsions. J. Am. Chem. Soc. 2019, 141, 18246–18255.

    Article  Google Scholar 

  75. Kikuchi, H. Liquid crystalline blue phases. In Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Kato, T., Ed.; Springer: Berlin, 2008; pp 99–117.

    Chapter  Google Scholar 

  76. Martínez-González, J. A.; Zhou, Y.; Rahimi, M.; Bukusoglu, E.; Abbott, N. L.; De Pablo, J. J. Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA 2015, 112, 13195–13200.

    Article  Google Scholar 

  77. Borshch, V.; Kim, Y. K.; Xiang, J.; Gao, M.; Jákli, A.; Panov, V. P.; Vij, J. K.; Imrie, C. T.; Tamba, M. G.; Mehl, G. H. et al. Nematic twist-bend phase with nanoscale modulation of molecular orientation. Nat. Commun. 2013, 4, 2635.

    Article  CAS  Google Scholar 

  78. Chen, D.; Porada, J. H.; Hooper, J. B.; Klittnick, A.; Shen, Y. Q.; Tuchband, M. R.; Korblova, E.; Bedrov, D.; Walba, D. M.; Glaser, M. A. et al. Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proc. Natl. Acad. Sci. USA 2013, 110, 15931–15936.

    Article  CAS  Google Scholar 

  79. Lee, C.; Kim, H.; Nam, Y. Drop impact dynamics on oil-infused nanostructured surfaces. Langmuir 2014, 30, 8400–8407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X. W. thanks the funding support from the startup fund of the Ohio State University (OSU) and OSU Institute for Materials Research Kickstart Facility Grant. S. Č. and U. T. acknowledge support by Slovenian Research Agency (ARRS) under contracts (Nos. P1-0099, P1-0055, and J1-2457).

Author information

Authors and Affiliations

  1. William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA

    Yang Xu, Weichen Deng, Jen-Chun Fang, Robert L. Dupont, Meng Zhang & Xiaoguang Wang

  2. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA

    Yuxing Yao

  3. Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000, Ljubljana, Slovenia

    Simon Čopar

  4. Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia

    Uroš Tkalec

  5. Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000, Maribor, Slovenia

    Uroš Tkalec

  6. Department of Condensed Matter Physics, Jožef Stefan Institute, 1000, Ljubljana, Slovenia

    Uroš Tkalec

  7. Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA

    Xiaoguang Wang

Authors
  1. Yang Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yuxing Yao
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Weichen Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jen-Chun Fang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Robert L. Dupont
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Meng Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Simon Čopar
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Uroš Tkalec
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Xiaoguang Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Xiaoguang Wang.

Supporting Information

Supplementary material, approximately 1.50 MB.

Electronic Supplementary Material: Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces

Electronic Supplementary Material: Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Yao, Y., Deng, W. et al. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. Nano Res. (2022). https://doi.org/10.1007/s12274-022-5318-y

Download citation

  • Received: 07 September 2022

  • Revised: 29 October 2022

  • Accepted: 13 November 2022

  • Published: 21 December 2022

  • DOI: https://doi.org/10.1007/s12274-022-5318-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • liquid crystals
  • lubricated surfaces
  • magnetic field
  • wettability
  • droplet mobility
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.168.16

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.