Skip to main content
Log in

Lithium deposition behavior in hard carbon hosts: Optical microscopy and scanning electron microscopy study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium (Li) metal is an ideal anode for the next generation high-energy-density batteries. However, it suffers from dendrite growth, side reactions, and infinite relative volume change. Effective strategies are using porous carbons or surface modification carbons to guide Li deposition into their pores. While the Li deposition behavior is still ambiguous. Here, we systematically determine their deposition behavior in various surface-modified carbons and in different electrolytes via optical microscopy and scanning electron microscopy study. It is found that Li will not spontaneously deposit into the carbon pores, which is significantly dependent on the carbon surface, current density, areal capacity, and electrolyte. Thus, a “lithiophilic” modified commercial hard carbon with Ag is developed as a stable “host” and efficient surface protection derived from the localized high-concentration electrolyte exhibits a pretty low volume change (5.3%) during cycling at a current density of 2 mA·cm−2 and an areal capacity of 2 mAh·cm−2. This strategy addresses the volume change and dendrite problems by rationally designed host and electrolyte, providing a broad perspective for realizing Li-metal anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, C. J.; Thirumalraj, B.; Tao, H. C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L. M.; Wang, C. C.; Wu, S. H. et al. Decoupling the origins of irreversible Coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 2021, 12, 1452.

    Article  CAS  Google Scholar 

  2. Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

    Article  CAS  Google Scholar 

  3. Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102.

    Article  CAS  Google Scholar 

  4. Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

    Article  Google Scholar 

  5. Zhao, Y. L.; Wang, L. P.; Zou, J.; Ran, Q. W.; Li, L.; Chen, P. Y.; Yu, H. L.; Gao, J.; Niu, X. B. Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. J. Energy Chem. 2022, 65, 666–673.

    Article  CAS  Google Scholar 

  6. Qi, S. H.; Liu, J. D.; He, J.; Wang, H. P.; Wu, M. G.; Wu, D. X.; Huang, J. D.; Li, F.; Li, X.; Ren, Y. R. et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. J. Energy Chem. 2021, 63, 270–277.

    Article  CAS  Google Scholar 

  7. Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224–2229.

    Article  CAS  Google Scholar 

  8. Gao, L.; Luo, S. B.; Li, J. X.; Cheng, B. W.; Kang, W. M.; Deng, N. P. Core-shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for highperformance all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 43, 266–274.

    Article  Google Scholar 

  9. Lu, Q. Q.; Jie, Y. L.; Meng, X. Q.; Omar, A.; Mikhailova, D.; Cao, R. G.; Jiao, S. H.; Lu, Y.; Xu, Y. L. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. Carbon Energy 2021, 3, 957–975.

    Article  CAS  Google Scholar 

  10. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

    Article  CAS  Google Scholar 

  11. Ma, Y.; Gu, Y. T.; He, Y.; Wei, L.; Lian, Y. B.; Pan, W. Y.; Li, X. J.; Su, Y. H.; Peng, Y.; Deng, Z. et al. Fast-charging and dendrite-free lithium metal anode enabled by partial lithiation of graphene aerogel. Nano Res. 2022, 15, 9792–9799.

    Article  CAS  Google Scholar 

  12. Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436.

    Article  CAS  Google Scholar 

  13. Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

    Article  CAS  Google Scholar 

  14. Cao, X.; Jia, H.; Xu, W.; Zhang, J. G. Review—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 2021, 168, 010522.

    Article  CAS  Google Scholar 

  15. Jin, S.; Ye, Y. D.; Niu, Y. J.; Xu, Y. S.; Jin, H. C.; Wang, J. X.; Sun, Z. W.; Cao, A. M.; Wu, X. J.; Luo, Y. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 2020, 142, 8818–8826.

    Article  Google Scholar 

  16. Zhang, S. M.; Yang, G. J.; Liu, Z. P.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 2021, 6, 4118–4126.

    Article  CAS  Google Scholar 

  17. Park, C. M.; Jung, H.; Sohn, H. J. Electrochemical behaviors and reaction mechanism of nanosilver with lithium. Electrochem. Solid-State Lett. 2009, 12, A171.

    Article  CAS  Google Scholar 

  18. Zhang, Z. L.; Jin, Y.; Zhao, Y.; Xu, J.; Sun, B.; Liu, K.; Lu, H. F.; Lv, N. W.; Dang, Z. M.; Wu, H. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Res. 2021, 14, 3999–4005.

    Article  CAS  Google Scholar 

  19. Lu, S. T.; Wang, H. H.; Zhou, J.; Wu, X. H.; Qin, W. Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Nanoscale 2017, 9, 1184–1192.

    Article  CAS  Google Scholar 

  20. Fang, Y. J.; Zhang, S. L.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci. Adv. 2021, 7, eabg3626.

    Article  CAS  Google Scholar 

  21. Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

    Article  CAS  Google Scholar 

  22. Liu, Y.; Wu, X. Y.; Niu, C. J.; Xu, W.; Cao, X.; Zhang, J. G.; Jiang, X. Y.; Xiao, J. H.; Yang, J.; Whittingham, M. S. et al. Systematic evaluation of carbon hosts for high-energy rechargeable lithium-metal batteries. ACS Energy Lett. 2021, 6, 1550–1559.

    Article  CAS  Google Scholar 

  23. Li, T.; Li, Y.; Sun, Y. L.; Qian, Z. F.; Wang, R. H. New insights on the good compatibility of ether-based localized high-concentration electrolyte with lithium metal. ACS Mater. Lett. 2021, 3, 838–844.

    Article  CAS  Google Scholar 

  24. Xie, L. J.; Tang, C.; Bi, Z. H.; Song, M. X.; Fan, Y. F.; Yan, C.; Li, X. M.; Su, F. Y.; Zhang, Q.; Chen, C. M. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective. Adv. Energy Mater. 2021, 11, 2101650.

    Article  CAS  Google Scholar 

  25. Wei, C. L.; Fei, H. F.; An, Y. L.; Tao, Y.; Feng, J. K.; Qian, Y. T. Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li-metal anode. J. Mater. Chem. A 2019, 7, 18861–18870.

    Article  CAS  Google Scholar 

  26. Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    Article  CAS  Google Scholar 

  27. Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

    Article  Google Scholar 

  28. Ji, X. L.; Liu, D. Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 2012, 7, 10–20.

    Article  CAS  Google Scholar 

  29. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

    Article  Google Scholar 

  30. Lin, D. C.; Zhao, J.; Sun, J.; Yao, H. B.; Liu, Y. Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA 2017, 114, 4613–4618.

    Article  CAS  Google Scholar 

  31. Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

    Article  CAS  Google Scholar 

  32. Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

    Article  CAS  Google Scholar 

  33. Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505–1509.

    Article  CAS  Google Scholar 

  34. Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Shirley Meng, Y.; Shao-Horn, Y.; Gallant, B M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

    Article  CAS  Google Scholar 

  35. Wan, C.; Hu, M. Y.; Borodin, O.; Qian, J. F.; Qin, Z. H.; Zhang, J. G.; Hu, J. Z. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes. J. Power Sources 2016, 307, 231–243.

    Article  CAS  Google Scholar 

  36. Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dualsolvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.

    Article  CAS  Google Scholar 

  37. Chen, X. R.; Zhao, B. C.; Yan, C.; Zhang, Q. Review on Li deposition in working batteries: From nucleation to early growth. Adv. Mater. 2021, 33, 2004128.

    Article  CAS  Google Scholar 

  38. Rosso, M.; Gobron, T.; Brissot, C.; Chazalviel, J. N.; Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 2001, 97–98, 804–806.

    Article  Google Scholar 

  39. Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52072061), the Fundamental Research Funds for the Central Universities, China (No. ZYGX2019Z008), and the China Postdoctoral Science Foundation Funded Project (No. 2019M661941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Zhao, Y., Hu, C. et al. Lithium deposition behavior in hard carbon hosts: Optical microscopy and scanning electron microscopy study. Nano Res. 16, 8368–8376 (2023). https://doi.org/10.1007/s12274-022-5256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5256-8

Keywords

Navigation