Skip to main content
Log in

New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled C—N configurations, i.e., pyrrolic-N, pyridinic-N, and graphitic-N, are promising strategies to tailor the carbon dots’ (CDs) optical properties into the first near infrared (NIR) window (650–900 nm), a responsive range for biomedical application. However, a deep understanding of the role of the C—N configuration in the CDs’ properties is still challenging and thought-provoking owing to their complex structure. Here, an underlying pyrrolic-N concentration and position effect on the pyrrolic-N-rich CDs’ absorption was comprehensively elucidated based on the integrated experimental and computational studies. The as-synthesized pyrrolic-N-rich CDs exhibit a first NIR window absorption centered at 650 nm with high photothermal conversion. Pyrrolic-N concentrations from 1.4% to 11.3% and positions (edge and mid-site) were systematically investigated. A mid-site pyrrolic-N was subsequently generated after the pyrrolic-N concentration more than 10%. Edge-site pyrrolic-N induces a frontier orbital hybridization, reducing bandgap energy, while mid-site pyrrolic-N plays a critical role in inducing a first NIR window absorption owing to their high charge transfer. Also, pyrrolic-N-rich CDs inherit a bowl-like topological feature, elevating the CDs’ layer thickness as much as 0.71 nm. This study shed light on the design and optimization of pyrrolic-N on CDs for the first NIR window responsive materials in any biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

    CAS  Google Scholar 

  2. Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

    CAS  Google Scholar 

  3. Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Döblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401.

    Google Scholar 

  4. Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhong, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

    CAS  Google Scholar 

  5. Saleem, U.; Permatasari, F. A.; Iskandar, F.; Ogi, T.; Okuyama, K.; Darma, Y.; Zhao, M.; Loh, K. P.; Rusydi, A.; Coquet, P. et al. Surface plasmon enhanced nitrogen-doped graphene quantum dot emission by single bismuth telluride nanoplates. Adv. Opt. Mater. 2017, 5, 1700176.

    Google Scholar 

  6. Yang, C. B.; Chan, K. K.; Xu, G. X.; Yin, M. J.; Lin, G. M.; Wang, X. M.; Lin, W. J.; Birowosuto, M. D.; Zeng, S. W.; Ogi, T. et al. Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2019, 11, 2768–2781.

    CAS  Google Scholar 

  7. Han, Y.; Liu, H. M.; Fan, M.; Gao, S. T.; Fan, D. H.; Wang, Z. G.; Chang, J.; Zhang, J. C.; Ge, K. Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. J. Colloid Interface Sci. 2022, 616, 595–604.

    CAS  Google Scholar 

  8. Tian, B. S.; Liu, S. K.; Feng, L. L.; Liu, S. H.; Gai, S. L.; Dai, Y. L.; Xie, L. S.; Liu, B.; Yang, P. P.; Zhao, Y. L. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow. Adv. Funct. Mater. 2021, 31, 2100549.

    CAS  Google Scholar 

  9. Zhu, P.; Wang, S. Y.; Zhang, Y. Q.; Li, Y. P.; Liu, Y. P.; Li, W. J.; Wang, Y. Y.; Yan, X.; Luo, D. X. Carbon dots in biomedicine: A review. ACS Appl. Bio Mater. 2022, 5, 2031–2045.

    CAS  Google Scholar 

  10. Feng, Z.; Tang, T.; Wu, T. X.; Yu, X. M.; Zhang, Y. H.; Wang, M.; Zheng, J. Y.; Ying, Y. Y.; Chen, S. Y.; Zhou, J. et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 2021, 10, 197.

    CAS  Google Scholar 

  11. Ogi, T.; Aishima, K.; Permatasari, F. A.; Iskandar, F.; Tanabe, E.; Okuyama, K. Kinetics of nitrogen-doped carbon dot formation: Via hydrothermal synthesis. New J. Chem. 2016, 40, 5555–5561.

    CAS  Google Scholar 

  12. Permatasari, F. A.; Aimon, A. H.; Iskandar, F.; Ogi, T.; Okuyama, K. Role of C—N configurations in the photoluminescence of graphene quantum dots synthesized by a hydrothermal route. Sci. Rep. 2016, 6, 21042.

    CAS  Google Scholar 

  13. Hess, S. C.; Permatasari, F. A.; Fukazawa, H.; Schneider, E. M.; Balgis, R.; Ogi, T.; Okuyama, K.; Stark, W. J. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films. J. Mater. Chem. A 2017, 5, 5187–5194.

    CAS  Google Scholar 

  14. Indriyati; Primadona, I.; Permatasari, F. A.; Irham, M. A.; Nasir, M.; Iskandar, F. Recent advances and rational design strategies of carbon dots towards highly efficient solar evaporation. Nanoscale 2021, 13, 7523–7532.

    CAS  Google Scholar 

  15. Umami, R.; Permatasari, F. A.; Muyassiroh, D. A. M.; Santika, A. S.; Sundari, C. D. D.; Ivansyah, A. L.; Ogi, T.; Iskandar, F. A rational design of carbon dots via the combination of nitrogen and oxygen functional groups towards the first NIR window absorption. J. Mater. Chem. C 2022, 10, 1394–1402.

    CAS  Google Scholar 

  16. Permatasari, F. A.; Fukazawa, H.; Ogi, T.; Iskandar, F.; Okuyama, K. Design of pyrrolic-N-rich carbon dots with absorption in the first near-infrared window for photothermal therapy. ACS Appl. Nano Mater. 2018, 1, 2368–2375.

    CAS  Google Scholar 

  17. Taspika, M.; Permatasari, F. A.; Nuryadin, B. W.; Mayangsari, T. R.; Aimon, A. H.; Iskandar, F. Simultaneous ultraviolet and first near-infrared window absorption of luminescent carbon dots/PVA composite film. RSC Adv. 2019, 9, 7375–7381.

    CAS  Google Scholar 

  18. Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659–8668.

    CAS  Google Scholar 

  19. Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra-(carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light Sci. Appl. 2016, 5, e16120.

    CAS  Google Scholar 

  20. Duan, Q. Q.; Si, S.; Sang, S. B.; Wang, J. L.; Zhang, B. Y.; Guan, Z. W.; Jia, M. Y.; Xue, J. J. Study on the photothermal performance of supra-(carbon nanodots) developed with dicyandiamide N-doped. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 648, 129346.

    CAS  Google Scholar 

  21. Permatasari, F. A.; Nakul, F.; Mayangsari, T. R.; Aimon, A. H.; Nuryadin, B. W.; Bisri, S. Z.; Ogi, T.; Iskandar, F. Solid-state nitrogen-doped carbon nanoparticles with tunable emission prepared by a microwave-assisted method. RSC Adv. 2021, 11, 39917–39923.

    CAS  Google Scholar 

  22. Yu, J. K.; Yong, X.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Theoretical understanding of structure—property relationships in luminescence of carbon dots. J. Phys. Chem. Lett. 2021, 12, 7671–7687.

    CAS  Google Scholar 

  23. Li, L.; Li, Y. T.; Ye, Y.; Guo, R. T.; Wang, A. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 2021, 15, 6872–6885.

    CAS  Google Scholar 

  24. Rigodanza, F.; Burian, M.; Arcudi, F.; Đorđević, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.

    CAS  Google Scholar 

  25. Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zbořil, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C 2016, 120, 1303–1308.

    CAS  Google Scholar 

  26. Jabed, M. A.; Zhao, J. L.; Kilin, D.; Yu, T. Understanding of light absorption properties of the N-doped graphene oxide quantum dot with TD-DFT. J. Phys. Chem. C 2021, 125, 14979–14990.

    CAS  Google Scholar 

  27. Yang, M.; Lian, Z.; Si, C. W.; Li, B. Revealing the role of nitrogen dopants in tuning the electronic and optical properties of graphene quantum dots via a TD-DFT study. Phys. Chem. Chem. Phys. 2020, 22, 28230–28237.

    CAS  Google Scholar 

  28. Kundelev, E. V.; Tepliakov, N. V.; Leonov, M. Y.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D.; Rogach, A. L. Amino functionalization of carbon dots leads to red emission enhancement. J. Phys. Chem. Lett. 2019, 10, 5111–5116.

    CAS  Google Scholar 

  29. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 09, Revision E. 01; Gaussian Inc.: Wallingford, 2016.

    Google Scholar 

  30. Chemcraft-graphical software for visualization of quantum chemistry computations. [Online]. https://www.chemcraftprog.com.

  31. Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

    Google Scholar 

  32. Feng, J. G.; Guo, Q.; Song, N.; Liu, H. Y.; Dong, H. Z.; Chen, Y. J.; Yu, L. Y.; Dong, L. F. Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns. Diam. Relat. Mater. 2021, 113, 108264.

    CAS  Google Scholar 

  33. Chen, S. W.; Ullah, N.; Zhang, R. Q. Engineering the excited state of graphitic carbon nitride nanostructures by covalently bonding with graphene quantum dots. Theor. Chem. Acc. 2020, 139, 20.

    CAS  Google Scholar 

  34. Cocchi, C.; Prezzi, D.; Ruini, A.; Caldas, M. J.; Molinari, E. Electronics and optics of graphene nanoflakes: Edge functionalization and structural distortions. J. Phys. Chem. C 2012, 116, 17328–17335.

    CAS  Google Scholar 

  35. Döring, A.; Ushakova, E.; Rogach, A. L. Chiral carbon dots: Synthesis, optical properties, and emerging applications. Light Sci. Appl. 2022, 11, 75.

    Google Scholar 

  36. Yuan, F. L.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z.; Chen, A. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

    Google Scholar 

  37. Li, Y. H.; Shu, H. B.; Niu, X. H.; Wang, J. L. Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C 2015, 119, 24950–24957.

    CAS  Google Scholar 

  38. Tian, K. S.; Wang, J. Y.; Cao, L.; Yang, W.; Guo, W. C.; Liu, S. H.; Li, W.; Wang, F. Y.; Li, X. A.; Xu, Z. P. et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 2020, 11, 3884.

    CAS  Google Scholar 

  39. Wang, H.; Haydel, P.; Sui, N.; Wang, L. N.; Liang, Y.; Yu, W. W. Wide emission shifts and high quantum yields of solvatochromic carbon dots with rich pyrrolic nitrogen. Nano Res. 2020, 13, 2492–2499.

    CAS  Google Scholar 

  40. Wu, S. H.; Zhou, R. H.; Chen, H. J.; Zhang, J. Y.; Wu, P. Highly efficient oxygen photosensitization of carbon dots: The role of nitrogen doping. Nanoscale 2020, 12, 5543–5553.

    CAS  Google Scholar 

  41. Cai, W.; Zhang, T.; Xu, M.; Zhang, M. R.; Guo, Y. J.; Zhang, L. P.; Street, J.; Ong, W. J.; Xu, Q. Full color carbon dots through surface engineering for constructing white light-emitting diodes. J. Mater. Chem. C 2019, 7, 2212–2218.

    CAS  Google Scholar 

  42. Bai, Y. L.; Zhao, J. J.; Wang, S. L.; Lin, T. R.; Ye, F. G.; Zhao, S. L. Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue pH and synergistic phototherapy. ACS Appl. Mater. Interfaces 2021, 13, 35365–35375.

    CAS  Google Scholar 

  43. Tetsuka, H.; Nagoya, A.; Fukusumi, T.; Matsui, T. Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv. Mater. 2016, 28, 4632–4638.

    CAS  Google Scholar 

  44. Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.

    CAS  Google Scholar 

  45. Chen, F.; Wu, X. L.; Shi, C. Y.; Lin, H. J.; Chen, J. R.; Shi, Y. P.; Wang, S. B.; Duan, X. G. Molecular engineering toward pyrrolic N-rich M-N4 (M = Cr, Mn, Fe, Co, Cu) single-atom sites for enhanced heterogeneous fenton-like reaction. Adv. Funct. Mater. 2021, 31, 2007877.

    CAS  Google Scholar 

  46. Feng, J. G.; Dong, H. Z.; Pang, B. L.; Shao, F. F.; Zhang, C. K.; Yu, L. Y.; Dong, L. F. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Phys. Chem. Chem. Phys. 2018, 20, 15244–15252.

    CAS  Google Scholar 

  47. Kim, B. G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater. 2013, 23, 439–445.

    CAS  Google Scholar 

  48. Zhang, S. Y.; Gao, M. J.; Zhai, Y. P.; Wen, J. Q.; Yu, J. K.; He, T. W.; Kang, Z. H.; Lu, S. Y. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production. J. Colloid Interface Sci. 2022, 622, 662–674.

    CAS  Google Scholar 

  49. Guégan, F.; Pigeon, T.; De Proft, F.; Tognetti, V.; Joubert, L.; Chermette, H.; Ayers, P. W.; Luneau, D.; Morell, C. Understanding chemical selectivity through well selected excited states. J. Phys. Chem. A 2020, 124, 633–641.

    Google Scholar 

  50. De Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

    CAS  Google Scholar 

  51. Song, L. Q.; Shi, J. J.; Lu, J.; Lu, C. Structure observation of graphene quantum dots by single-layered formation in layered confinement space. Chem. Sci. 2015, 6, 4846–4850.

    CAS  Google Scholar 

  52. Ren, Q. L.; Ga, L.; Ai, J. Rapid synthesis of highly fluorescent nitrogen-doped graphene quantum dots for effective detection of ferric ions and as fluorescent ink. ACS Omega 2019, 4, 15842–15848.

    CAS  Google Scholar 

  53. Kim, J. K.; Kim, S. J.; Park, M. J.; Bae, S.; Cho, S. P.; Du, Q. G.; Wang, D. H.; Park, J. H.; Hong, B. H. Surface-engineered graphene quantum dots incorporated into polymer layers for high performance organic photovoltaics. Sci. Rep. 2015, 5, 14276.

    CAS  Google Scholar 

  54. Wu, W. T.; Wu, H. X.; Zhong, M.; Guo, S. W. Dual role of graphene quantum dots in active layer of inverted bulk heterojunction organic photovoltaic devices. ACS Omega 2019, 4, 16159–16165.

    CAS  Google Scholar 

  55. Khojasteh, H.; Amiri, M.; Sohrabi, A.; Khanahmadzadeh, S.; Salavati-Niasari, M.; Moayedi, H. Synthesis of magnetically reusable Fe3O4/TiO2-N, P co-doped graphene quantum dot nancomposites using hexachlorocyclophosphazene; high photoluminance property and photocatalytic promoter. J. Mater. Res. Technol. 2020, 9, 1380–1388.

    CAS  Google Scholar 

  56. Parr, R. G.; Szentpály, L. V.; Liu, S. B. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922–1924.

    CAS  Google Scholar 

  57. Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Electrophilicity index. Chem. Rev. 2006, 106, 2065–2091.

    CAS  Google Scholar 

  58. Abdelati, M. A.; Fadlallah, M. M.; Gamal, Y. E. E. D.; Maarouf, A. A. Pristine and holey graphene quantum dots: Optical properties using time independent and dependent density functional theory. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114602.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was fully supported by the Indonesian Endowment Fund for Education and the Indonesian Science Fund through the International Collaboration RISPRO Funding Program (No. RISPRO/KI/B1/KOM/11/4542/2/2020). F. A. P, R.U, and C. D. D. S would like to thank the Ministry of Fiscal Indonesia Endowment Fund for Education (LPDP) for their master and doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferry Iskandar.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permatasari, F.A., Umami, R., Sundari, C.D.D. et al. New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots. Nano Res. 16, 6001–6009 (2023). https://doi.org/10.1007/s12274-022-5131-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5131-7

Keywords

Navigation