Skip to main content
Log in

Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Microwave absorption materials are prone to degradation in extremely humid and salty environments, and it is still challenging to develop a dense and firm interface to protect microwave absorbers. Herein, a robust FeSiAl@PUA@SiO2 (PUA: acrylic polyurethane) gradient hybrid was prepared through plasma-enhanced chemical vapor deposition (PECVD) to achieve efficient microwave absorption and anti-corrosion properties. The organic/inorganic dual coat of PUA/SiO2 not only facilitated the interface polarization but also effectively reduced the dielectric constant and optimized impedance matching. Owing to the unique hybrid structure, the (PECVD-FeSiAl@PUA)@SiO2 exhibited highly efficient microwave absorbing performance in frequency bands covering almost the entire Ku-bands (12–18 GHz) with a minimum reflection loss (RLmin) of −47 dB with a matching thickness of 2.3 mm. The organic/inorganic dual protection effectively shields against the corrosive medium, as the corrosion potential and the polarization resistance increased from −0.167 to −0.047 V and 8,064 to 16,273 Ω·cm2, respectively. While the corrosion current decreased from 3.04 × 10−6 to 2.16 × 10−6 A/cm2. Hence, the plasma-enhanced densification of PUA created a strong bridge to integrate FeSiAl and organic/inorganic components acquiring dual-function of efficient microwave absorption and anti-corrosion, which opened a promising platform for potential practical absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

    Article  CAS  Google Scholar 

  2. Wang, Y. Y.; Zhu, J. L.; Li, N.; Shi, J. F.; Tang, J. H.; Yan, D. X.; Li, Z. M. Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Res. 2022, 15, 7723–7730.

    Article  CAS  Google Scholar 

  3. Meng, X.; He, L.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption. Carbon 2022, 194, 207–219.

    Article  CAS  Google Scholar 

  4. Hu, Q. M.; Yang, R. L.; Mo, Z. C.; Lu, D. W.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon 2019, 153, 737–744.

    Article  CAS  Google Scholar 

  5. Fu, H. H.; Guo, Y.; Yu, J.; Shen, Z.; Zhao, J.; Xie, Y.; Ling, Y.; Ouyang, S.; Li, S. Q.; Zhang, W. Tuning the shell thickness of core-shell α-Fe2O3@SiO2 nanoparticles to promote microwave absorption. Chin. Chem. Lett. 2022, 33, 957–962.

    Article  CAS  Google Scholar 

  6. Ren, S. N.; Yu, H. J.; Wang, L.; Huang, Z. K.; Lin, T. F.; Huang, Y. D.; Yang, J.; Hong, Y. C.; Liu, J. Y. State of the art and prospects in metal-organic framework-derived microwave absorption materials. Nano-Micro Lett. 2022, 14, 68.

    Article  CAS  Google Scholar 

  7. Arai, K. I.; Tsuya, N.; Ohmori, K.; Yamamoto, T.; Miyazaki, T. Magnetic properties of ribbon-form sendust alloy. J. Magn. Magn. Mater. 1980, 19, 85–87.

    Article  CAS  Google Scholar 

  8. Wakiyama, T.; Takahashi, M.; Nishimaki, S.; Shimoda, J. Magnetic properties of Fe-Si-Al single crystals. IEEE Trans. Magn. 1981, 17, 3147–3150.

    Article  Google Scholar 

  9. Wu, Y. P.; Gao, X.; Cheng, J. X.; Wen, W. W.; Wang, Q. B.; Zhu, Z. M. Optimum design for permittivity of dielectric absorbing materials. J. Phys. Conf. Ser. 2021, 1765, 012002.

    Article  CAS  Google Scholar 

  10. Qing, Y. C.; Su, J. B.; Wen, Q. L.; Luo, F.; Zhu, D. M.; Zhou, W. C. Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying. J. Alloys Compd. 2015, 651, 259–265.

    Article  CAS  Google Scholar 

  11. Duan, Y. P.; Liu, W.; Song, L. L.; Wang, T. M. A discrete structure: FeSiAl/carbon black composite absorption coatings. Mater. Res. Bull. 2017, 88, 41–48.

    Article  CAS  Google Scholar 

  12. Zhou, L.; Huang, J. L.; Wang, H. B.; Chen, M.; Dong, Y. L.; Zheng, F. K. FeSiAl/ZnO-filled resin composite coatings with enhanced dielectric and microwave absorption properties. J. Mater. Sci. Mater. Electron. 2019, 30, 1896–1906.

    Article  CAS  Google Scholar 

  13. Liu, D.; Wu, C.; Yan, M.; Wang, J. Correlating the microstructure, growth mechanism and magnetic properties of FeSiAl soft magnetic composites fabricated via HNO3 oxidation. Acta Mater. 2018, 146, 294–303.

    Article  CAS  Google Scholar 

  14. Liu, W.; Shao, Q. W.; Ji, G. B.; Liang, X. H.; Cheng, Y.; Quan, B.; Du, Y. W. Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 2017, 313, 734–744.

    Article  CAS  Google Scholar 

  15. Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. NanoMicro Lett. 2021, 13, 47.

    Google Scholar 

  16. Ma, G. J.; Duan, Y. P.; Liu, Y.; Gao, S. H. Effect of surface modified SiO2 powders on microwave absorbing properties of flaky FeSiAl coatings. J. Mater. Sci. Mater. Electron. 2018, 29, 17405–17415.

    Article  CAS  Google Scholar 

  17. Guo, Y.; Zhang, X. Z.; Feng, X. Q.; Jian, X.; Zhang, L.; Deng, L. J. Non-isothermal oxidation kinetics of FeSiAl alloy powder for microwave absorption at high temperature. Compos. B. Eng. 2018, 155, 282–287.

    Article  CAS  Google Scholar 

  18. Chen, Y. H.; Huang, Z. H.; Lu, M. M.; Cao, W. Q.; Yuan, J.; Zhang, D. Q.; Cao, M. S. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. J. Mater. Chem. A 2015, 3, 12621–12625.

    Article  CAS  Google Scholar 

  19. Tian, W.; Li, J. Y.; Liu, Y. F.; Deng, L. J.; Guo, Y.; Jian, X. Large-scale synthesis of fluorine-free carbonyl iron-organic silicon hydrophobic absorbers with long term corrosion protection property. Nano Res. 2022, 15, 9479–9491.

    Article  CAS  Google Scholar 

  20. Cao, L.; Jiang, J. T.; Wang, Z. Q.; Gong, Y. X.; Liu, C.; Zhen, L. Electromagnetic properties of flake-shaped Fe-Si alloy particles prepared by ball milling. J. Magn. Magn. Mater. 2014, 368, 295–299.

    Article  CAS  Google Scholar 

  21. Guo, Y.; Ali, R.; Zhang, X. Z.; Tian, W.; Zhang, L.; Lu, H. P.; Jian, X.; Xie, J. L.; Deng, L. J. Raman and XPS depth profiling technique to investigate the corrosion behavior of FeSiAl alloy in salt spray environment. J. Alloys Compd. 2020, 834, 155075.

    Article  CAS  Google Scholar 

  22. Li, J. Y.; Guo, Y.; Yang, R. Q.; Liu, Z. Y.; Tian, H. X.; Tian, W.; Liu, Y. F.; Jian, X. Achieving ultra-low frequency microwave absorbing properties based on anti-corrosive silica-pinned flake FeSiAl hybrid with full L band absorption. J. Alloys Compd. 2021, 888, 161574.

    Article  CAS  Google Scholar 

  23. Zhang, X. Z.; Guo, Y.; Ali, R.; Tian, W.; Liu, Y. F.; Zhang, L.; Wang, X.; Zhang, L. B.; Yin, L. J.; Su, H. et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 2020, 828, 154079.

    Article  CAS  Google Scholar 

  24. Liu, S.; Qin, S. H.; Jiang, Y.; Song, P. G.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106376.

    Article  CAS  Google Scholar 

  25. Chen, K. X.; Liu, M.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Feng, Y. Z.; Song, P. A. Multi-hierarchical flexible composites towards superior fire safety and electromagnetic interference shielding. Nano Res. 2022, 15, 9531–9543.

    Article  CAS  Google Scholar 

  26. Tang, T. T.; Wang, S. C.; Jiang, Y.; Xu, Z. G.; Chen, Y.; Peng, T. S.; Khan, F.; Feng, J. B.; Song, P. G.; Zhao, Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 66–75.

    Article  Google Scholar 

  27. Chen, K. X.; Feng, Y. Z.; Shi, Y. Q.; Wang, H. R.; Fu, L. B.; Liu, M.; Lv, Y. C.; Yang, F. Q.; Yu, B.; Liu, M. H. et al. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos. Part A Appl. Sci. Manuf. 2022, 160, 107070.

    Article  CAS  Google Scholar 

  28. Liu, L.; Ma, Z. W.; Zhu, M. H.; Liu, L. N.; Dai, J. F.; Shi, Y. Q.; Gao, J. F.; Dinh, T.; Nguyen, T.; Tang, L. C. et al. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J. Mater. Sci. Technol. 2023, 132, 59–68.

    Article  Google Scholar 

  29. Maklakov, S. S.; Lagarkov, A. N.; Maklakov, S. A.; Adamovich, Y. A.; Petrov, D. A.; Rozanov, K. N.; Ryzhikov, I. A.; Zarubina, A. Y.; Pokholok, K. V.; Filimonov, D. S. Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications. J. Alloys Compd. 2017, 706, 267–273.

    Article  CAS  Google Scholar 

  30. Xue, F.; Jia, D. M.; Li, Y.; Jing, X. L. Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. J. Mater. Chem. A 2015, 3, 13856–13863.

    Article  CAS  Google Scholar 

  31. Pan, Y.; Li, J. Y.; Liu, Z. Y.; Yang, R. Q.; Liu, Y. F.; Yin, L. J.; Liu, H. K.; Jian, X. Inorganic/organic bilayer of silica/acrylic polyurethane decorating FeSiAl for enhanced anti-corrosive microwave absorption. Appl. Surf. Sci. 2021, 567, 150829.

    Article  CAS  Google Scholar 

  32. Nguyen, B. Q. H.; Shanmugasundaram, A.; Hou, T. F.; Park, J.; Lee, D. W. Realizing the flexible and transparent highly-hydrophobic film through siloxane functionalized polyurethane-acrylate micro-pattern. Chem. Eng. J. 2019, 373, 68–77.

    Article  CAS  Google Scholar 

  33. Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026.

    Article  CAS  Google Scholar 

  34. Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

    Article  CAS  Google Scholar 

  35. Guo, Y.; Jian, X.; Zhang, L.; Mu, C. H.; Yin, L. J.; Xie, J. L.; Mahmood, N.; Dou, S. X.; Che, R. C.; Deng, L. J. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371.

    Article  CAS  Google Scholar 

  36. Tian, W.; Zhang, X. Z.; Guo, Y.; Mu, C. H.; Zhou, P. H.; Yin, L. J.; Zhang, L. B.; Zhang, L.; Lu, H. P.; Jian, X. et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption. Carbon 2021, 173, 185–193.

    Article  CAS  Google Scholar 

  37. Ma, Y. J.; Ye, Y. P.; Wan, H. Q.; Chen, L.; Zhou, H. D.; Chen, J. M. Chemical modification of graphene oxide to reinforce the corrosion protection performance of UV-curable polyurethane acrylate coating. Prog. Org. Coat. 2020, 141, 105547.

    Article  CAS  Google Scholar 

  38. Jian, X.; Tian, W.; Li, J. Y.; Deng, L. J.; Zhou, Z. W.; Zhang, L.; Lu, H. P.; Yin, L. J.; Mahmood, N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 15869–15880.

    Article  CAS  Google Scholar 

  39. Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Lei, Y. M.; Yang, Z. H.; Lv, H. L.; Kong, L. B. Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 2017, 9, 16404–16416.

    Article  CAS  Google Scholar 

  40. Yan, L. W.; Hong, C. Q.; Sun, B. Q.; Zhao, G. D.; Cheng, Y. H.; Dong, S.; Zhang, D. Y.; Zhang, X. H. In situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 2017, 9, 6320–6331.

    Article  CAS  Google Scholar 

  41. Byun, K. M.; Lee, W. J. Deposition characteristics of low dielectric constant SiOF films prepared by ECR PECVD. Met. Mater. 2000, 6, 155–160.

    Article  CAS  Google Scholar 

  42. Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. B Eng. 2021, 222, 109067.

    Article  CAS  Google Scholar 

  43. Zhou, L.; Gao, L.; Yang, M.; Zhang, B. S.; Wei, G. K. In situ growth of nanocarbon-coated Ni particles by PECVD for enhanced microwave absorption. J. Mater. Sci. Mater. Electron. 2022, 33, 16306–16319.

    Article  CAS  Google Scholar 

  44. Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

    Article  CAS  Google Scholar 

  45. Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

    Article  CAS  Google Scholar 

  46. Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

    Article  CAS  Google Scholar 

  47. Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

    Article  Google Scholar 

  48. Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

    Article  CAS  Google Scholar 

  49. Yang, P. A.; Huang, Y. X.; Li, R.; Huang, X.; Ruan, H. B.; Shou, M. J.; Li, W. J.; Zhang, Y. X.; Li, N.; Dong, L. C. Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878.

    Article  CAS  Google Scholar 

  50. Han, M. Y.; Zhou, M.; Wu, Y.; Zhao, Y.; Cao, J. M.; Tang, S. L.; Zou, Z. Q.; Ji, G. B. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption. J. Alloys Compd. 2022, 902, 163792.

    Article  CAS  Google Scholar 

  51. Zhang, Z. Y.; Zhao, Y. H.; Li, Z. H.; Zhang, L. J.; Liu, Z. X.; Long, Z. K.; Li, Y. J.; Liu, Y.; Fan, R. H.; Sun, K. et al. Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv. Compos. Hybrid Mater. 2022, 5, 513–524.

    Article  CAS  Google Scholar 

  52. Ma, Z.; Zhang, Y.; Cao, C. T.; Yuan, J.; Liu, Q. F.; Wang, J. B. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys. B 2011, 406, 4620–4624.

    Article  CAS  Google Scholar 

  53. Meng, X.; Lei, W. J.; Yang, W. W.; Liu, Y. Q.; Yu, Y. S. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance. J. Colloid Interface Sci. 2021, 600, 382–389.

    Article  CAS  Google Scholar 

  54. Yang, H.-J.; Cao, W.-Q.; Zhang, D.-Q.; Su, T.-J.; Shi, H.-L.; Wang, W.-Z.; Yuan, J.; Cao, M.-S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

    Article  CAS  Google Scholar 

  55. Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nanomicroarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

    Article  CAS  Google Scholar 

  56. Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/CoxFe3−XO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

    Article  CAS  Google Scholar 

  57. Ye, Y. W.; Liu, Z. Y.; Liu, W.; Zhang, D. W.; Zhao, H. C.; Wang, L. P.; Li, X. G. Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chem. Eng. J. 2018, 348, 940–951.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51972045), the Fundamental Research Funds for the Chinese Central Universities, China (No. ZYGX2019J025), and Sichuan Science and Technology Program (No. 2021YFG0373). The authors would like to acknowledge access to the RMIT Micro Nano Research Facility (MNRF) in the Victorian node of the Australian National Fabrication Facility (ANFF), the RMIT Microscopy and Microanalysis Facility (RMMF), as well as the financial support from Vice-Chancellor fellowship scheme at RMIT University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasir Mahmood or Xian Jian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cao, F., Xu, H. et al. Plasma-enhanced interfacial engineering of FeSiAl@PUA@SiO2 hybrid for efficient microwave absorption and anti-corrosion. Nano Res. 16, 645–653 (2023). https://doi.org/10.1007/s12274-022-5100-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5100-1

Keywords

Navigation