Skip to main content
Log in

Nanoporous black silver film with high porosity for efficient solar steam generation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Given the challenges brought by the shortage of freshwater resources, solar water evaporation has been regarded as one of the most promising technologies for harnessing abundant sunlight to harvest clean water from the sea. Nanostructured metals have attracted extensive attention in solar water evaporation due to their localized surface plasmon resonance effect, but highly porous metallic films with high evaporation efficiency are challenging. Herein, a self-supporting black nanoporous silver (NP-Ag) film was fabricated by dealloying of an extremely dilute Al99Ag1 alloy. The choice of the dilute precursor guarantees the formation of the NP-Ag film with high porosity (96.5%) and low density (0.3703 g·cm−3, even smaller than the lightest metal lithium). The three-dimensional ligament-channel network structure and the nanoscale (14.6 nm) of ligaments enable the NP-Ag film to exhibit good hydrophilicity and broadband absorption over 200–2,500 nm. More importantly, the solar evaporator based on the NP-Ag film shows efficient solar steam generation, including the efficiency of 92.6%, the evaporation rate of 1.42 kg·m−2·h−1 and good cycling stability under one sun irradiation. Moreover, the NP-Ag film exhibits acceptable seawater desalination property with the ion rejection for Mg2+, Ca2+, K+ and Na+ more than 99.3%. Our findings could provide a new idea and inspiration for the design and fabrication of metal-based photothermal films in real solar evaporation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Post, V. E. A.; Groen, J.; Kooi, H.; Person, M.; Ge, S. M.; Edmunds, W. M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71–78.

    CAS  Google Scholar 

  2. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

    Google Scholar 

  3. Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

    CAS  Google Scholar 

  4. Yan, C. C.; Jin, J. Q.; Wang, J. N.; Zhang, F. F.; Tian, Y. J.; Liu, C. X.; Zhang, F. Q.; Cao, L. C.; Zhou, Y. M.; Han, Q. X. Metal-organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coord. Chem. Rev. 2022, 468, 214595.

    CAS  Google Scholar 

  5. Schlosser, C. A.; Strzepek, K.; Gao, X.; Fant, C.; Blanc, É.; Paltsev, S.; Jacoby, H.; Reilly, J.; Gueneau, A. The future of global water stress: An integrated assessment. Earth’s Fut. 2014, 2, 341–361.

    Google Scholar 

  6. Kim, S. J.; Ko, S. H.; Kang, K. H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301.

    CAS  Google Scholar 

  7. Bamufleh, H.; Abdelhady, F.; Baaqeel, H. M.; El-Halwagi, M. M. Optimization of multi-effect distillation with brine treatment via membrane distillation and process heat integration. Desalination 2017, 408, 110–118.

    CAS  Google Scholar 

  8. Morris, R. M. The development of the multi-stage flash distillation process: A designer’s viewpoint. Desalination 1993, 93, 57–68.

    CAS  Google Scholar 

  9. Shenvi, S. S.; Isloor, A. M.; Ismail, A. F. A review on RO membrane technology: Developments and challenges. Desalination 2015, 368, 10–26.

    CAS  Google Scholar 

  10. Wenten, I. G.; Khoiruddin. Reverse osmosis applications: Prospect and challenges. Desalination 2016, 391, 112–125.

    CAS  Google Scholar 

  11. Zhang, P. H.; Li, J. H.; Chan-Park, M. B. Hierarchical porous carbon for high-performance capacitive desalination of brackish water. ACS Sustainable Chem. Eng. 2020, 8, 9291–9300.

    CAS  Google Scholar 

  12. Huang, X. Y.; Yu, Y. H.; De Llergo, O. L.; Marquez, S. M.; Cheng, Z. D. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC Adv. 2017, 7, 9495–9499.

    CAS  Google Scholar 

  13. Wang, Y. C.; Wang, C. Z.; Song, X. J.; Huang, M. H.; Megarajan, S. K.; Shaukat, S. F.; Jiang, H. Q. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 2018, 6, 9874–9881.

    CAS  Google Scholar 

  14. Wang, C. Z.; Wang, Y. C.; Song, X. J.; Huang, M. H.; Jiang, H. Q. A facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation. Adv. Sustainable Syst. 2019, 3, 1800108.

    Google Scholar 

  15. Fan, Y. K.; Bai, W.; Mu, P.; Su, Y. N.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators. Sol. Energy Mater. Sol. Cells 2020, 206, 110347.

    CAS  Google Scholar 

  16. Li, J. Y.; Zhou, X.; Mu, P.; Wang, F.; Sun, H. X.; Zhu, Z. Q.; Zhang, J. W.; Li, W. W.; Li, A. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators. ACS Appl. Mater. Interfaces 2020, 12, 798–806.

    CAS  Google Scholar 

  17. Zhu, G. L.; Xu, J. J.; Zhao, W. L.; Huang, F. Q. Constructing black Titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 2016, 8, 31716–31721.

    CAS  Google Scholar 

  18. Ghim, D.; Jiang, Q. S.; Cao, S. S.; Singamaneni, S.; Jun, Y. S. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. Nano Energy 2018, 53, 949–957.

    CAS  Google Scholar 

  19. Yang, Y. W.; Zhao, H. Y.; Yin, Z. Y.; Zhao, J. Q.; Yin, X. T.; Li, N.; Yin, D. D.; Li, Y. N.; Lei, B.; Du, Y. P. et al. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Mater. Horiz. 2018, 5, 1143–1150.

    CAS  Google Scholar 

  20. Guo, Z. Z.; Chen, Z. H.; Shi, Z. X.; Qian, J. W.; Li, J. H.; Mei, T.; Wang, J. Y.; Wang, X. B.; Shen, P. Stable metallic 1T phase engineering of molybdenum disulfide for enhanced solar vapor generation. Sol. Energy Mater. Sol. Cells 2020, 204, 110227.

    CAS  Google Scholar 

  21. Wang, Q. M.; Jia, F. F.; Huang, A. H.; Qin, Y.; Song, S. X.; Li, Y. M.; Arroyo, M. A. C. MoS2@sponge with double layer structure for high-efficiency solar desalination. Desalination 2020, 481, 114359.

    CAS  Google Scholar 

  22. Zhang, L.; Mu, L.; Zhou, Q. X.; Hu, X. G. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Res. 2020, 170, 115367.

    CAS  Google Scholar 

  23. Higgins, M. W.; Rahmaan, S. A. R.; Devarapalli, R. R.; Shelke, M. V.; Jha, N. Carbon fabric based solar steam generation for waste water treatment. Solar Energy 2018, 159, 800–810.

    CAS  Google Scholar 

  24. Liu, S.; Huang, C. L.; Luo, X.; Rao, Z. H. High-performance solar steam generation of a paper-based carbon particle system. Appl. Therm. Eng. 2018, 142, 566–572.

    CAS  Google Scholar 

  25. Kou, H.; Liu, Z. X.; Zhu, B.; Macharia, D. K.; Ahmed, S.; Wu, B. H.; Zhu, M. F.; Liu, X. G.; Chen, Z. G. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29–38.

    CAS  Google Scholar 

  26. Xia, Y.; Hou, Q. F.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H. Y.; Woo, M. W.; Zhang, L.; Gao, L. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 2019, 12, 1840–1847.

    CAS  Google Scholar 

  27. Wang, C. B.; Wang, J. L.; Li, Z. T.; Xu, K. Y.; Lei, T.; Wang, W. K. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A 2020, 8, 9528–9535.

    CAS  Google Scholar 

  28. Wei, W.; Zhu, Y.; Wang, N.; Mei, H.; Yin, S. Photothermal characteristics of novel flexible black silicon for solar thermal receiver. Int. J. Thermophys. 2012, 33, 2179–2184.

    CAS  Google Scholar 

  29. Wang, X. Z.; He, Y. R.; Liu, X.; Cheng, G.; Zhu, J. Q. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 2017, 195, 414–425.

    CAS  Google Scholar 

  30. Zhang, L. L.; Xing, J.; Wen, X. L.; Chai, J. W.; Wang, S. J.; Xiong, Q. H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 2017, 9, 12843–12849.

    CAS  Google Scholar 

  31. Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

    Google Scholar 

  32. Chen, M. J.; Mandal, J.; Ye, Q.; Li, A. J.; Cheng, Q.; Gong, T. Y.; Jin, T. W.; He, Y. R.; Yu, N. F.; Yang, Y. A scalable dealloying technique to create thermally stable plasmonic nickel selective solar absorbers. ACS Appl. Energy Mater. 2019, 2, 6551–6557.

    CAS  Google Scholar 

  33. Yin, K.; Yang, S.; Wu, J. R.; Li, Y. J.; Chu, D. K.; He, J.; Duan, J. A. Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination. J. Mater. Chem. A 2019, 7, 8361–8367.

    CAS  Google Scholar 

  34. Wang, Z. H.; Liu, Y. M.; Tao, P.; Shen, Q. C.; Yi, N.; Zhang, F. Y.; Liu, Q. L.; Song, C. Y.; Zhang, D.; Shang, W. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small 2014, 10, 3234–3239.

    CAS  Google Scholar 

  35. Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768–2774.

    CAS  Google Scholar 

  36. Wu, T.; Li, H. X.; Xie, M. H.; Shen, S.; Wang, W. X.; Zhao, M.; Mo, X. M.; Xia, Y. N. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Mater. Today Energy 2019, 12, 129–135.

    Google Scholar 

  37. Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

    CAS  Google Scholar 

  38. Wang, M. M.; Wang, P.; Zhang, J.; Li, C. P.; Jin, Y. D. A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline. ChemSusChem 2019, 12, 467–472.

    CAS  Google Scholar 

  39. Wang, H. L.; Miao, L.; Tanemura, S. Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Sol. RRL 2017, 1, 1600023.

    Google Scholar 

  40. Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400–407.

    CAS  Google Scholar 

  41. Qiao, P. Z.; Wu, J. X.; Li, H. Z.; Xu, Y. C.; Ren, L. P.; Lin, K.; Zhou, W. Plasmon Ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 2019, 11, 7066–7073.

    CAS  Google Scholar 

  42. Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

    CAS  Google Scholar 

  43. Chang, C.; Yang, C.; Liu, Y. M.; Tao, P.; Song, C. Y.; Shang, W.; Wu, J. B.; Deng, T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl. Mater. Interfaces 2016, 8, 23412–23418.

    CAS  Google Scholar 

  44. Huang, J.; He, Y. R.; Wang, L.; Huang, Y. M.; Jiang, B. C. Bifunctional Au@TiO2 core—shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers. Manag. 2017, 132, 452–459.

    CAS  Google Scholar 

  45. Li, H. R.; He, Y. R.; Liu, Z. Y.; Jiang, B. C.; Huang, Y. M. A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy 2017, 139, 210–219.

    CAS  Google Scholar 

  46. Liu, C. X.; Huang, J. F.; Hsiung, C. E.; Tian, Y.; Wang, J. J.; Han, Y.; Fratalocchi, A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustainable Syst. 2017, 1, 1600013.

    Google Scholar 

  47. Liu, Z. P.; Yang, Z. J.; Huang, X. C.; Xuan, C. Y.; Xie, J. H.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Zhou, X. C.; Liu, Y. Z. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J. Mater. Chem. A 2017, 5, 20044–20052.

    CAS  Google Scholar 

  48. Liu, Y. Z.; Liu, Z. P.; Huang, Q. C.; Liang, X. C.; Zhou, X. C.; Fu, H. D.; Wu, Q. X.; Zhang, J. M.; Xie, W. A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. J. Mater. Chem. A 2019, 7, 2581–2588.

    CAS  Google Scholar 

  49. Yu, S. T.; Zhang, Y.; Duan, H. Z.; Liu, Y. M.; Quan, X. J.; Tao, P.; Shang, W.; Wu, J. B.; Song, C. Y.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep. 2015, 5, 13600.

    Google Scholar 

  50. Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

    Google Scholar 

  51. Liu, Y.; Lou, J. W.; Ni, M. T.; Song, C. Y.; Wu, J. B.; Dasgupta, N. P.; Tao, P.; Shang, W.; Deng, T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 2016, 8, 772–779.

    CAS  Google Scholar 

  52. Fang, J.; Liu, Q. L.; Zhang, W.; Gu, J. J.; Su, Y. S.; Su, H. L.; Guo, C. P.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. J. Mater. Chem. A 2017, 5, 17817–17821.

    CAS  Google Scholar 

  53. Chen, M. L.; Wu, Y. F.; Song, W. X.; Mo, Y. C.; Lin, X. K.; He, Q.; Guo, B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale 2018, 10, 6186–6193.

    CAS  Google Scholar 

  54. McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286.

    CAS  Google Scholar 

  55. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    CAS  Google Scholar 

  56. Schaedler, T. A.; Jacobsen, A. J.; Torrents, A.; Sorensen, A. E.; Lian, J.; Greer, J. R.; Valdevit, L.; Carter, W. B. Ultralight metallic microlattices. Science 2011, 334, 962–965.

    CAS  Google Scholar 

  57. Prieto, P.; Nistor, V.; Nouneh, K.; Oyama, M.; Abd-Lefdil, M.; Díaz, R. XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 2012, 258, 8807–8813.

    CAS  Google Scholar 

  58. Fang, R. M.; He, M.; Huang, H. B.; Feng, Q. Y.; Ji, J.; Zhan, Y. J.; Leung, D. Y. C.; Zhao, W. Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature. Chemosphere 2018, 213, 235–243.

    CAS  Google Scholar 

  59. Tang, X. F.; Chen, J. L.; Li, Y. G.; Li, Y.; Xu, Y. D.; Shen, W. J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem. Eng. J. 2006, 118, 119–125.

    CAS  Google Scholar 

  60. Alshehri, A. H.; Mistry, K.; Nguyen, V. H.; Ibrahim, K. H.; Muñoz-Rojas, D.; Yavuz, M.; Musselman, K. P. Quantum-tunneling metal-insulator-metal diodes made by rapid atmospheric pressure chemical vapor deposition. Adv. Funct. Mater. 2019, 29, 1805533.

    Google Scholar 

  61. Zhao, Y. J.; You, D. Y.; Yang, W. T.; Yu, H.; Pan, Q. H.; Song, S. Y. Cobalt nanoparticle-carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environ. Sci. Water Res. Technol. 2022, 8, 151–161.

    CAS  Google Scholar 

  62. Liang, J.; Liu, H. Z.; Yu, J. Y.; Zhou, L.; Zhu, J. Plasmon-enhanced solar vapor generation. Nanophotonics 2019, 8, 771–786.

    Google Scholar 

  63. Jalas, D.; Canchi, R.; Petrov, A. Y.; Lang, S.; Shao, L.; Weissmüller, J.; Eich, M. Effective medium model for the spectral properties of nanoporous gold in the visible. Appl. Phys. Lett. 2014, 105, 241906.

    Google Scholar 

  64. Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.

    CAS  Google Scholar 

  65. Kim, W. J.; Taya, M.; Nguyen, M. N. Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech. Mater. 2009, 41, 1116–1124.

    Google Scholar 

  66. World Health Organization (WHO). Safe Drinking-Water from Desalination. Geneva, Switzerland: WHO, 2011.

    Google Scholar 

  67. Xiao, Y. Y.; Wang, X.; Li, C. X.; Peng, H.; Zhang, T. Q.; Ye, M. M. A salt-rejecting solar evaporator for continuous steam generation. J. Environ. Chem. Eng. 2021, 9, 105010.

    CAS  Google Scholar 

  68. Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

    CAS  Google Scholar 

  69. Graf, M.; Jalas, D.; Weissmüller, J.; Petrov, A. Y.; Eich, M. Surface-to-volume ratio drives photoelelectron injection from nanoscale gold into electrolyte. ACS Catal. 2019, 9, 3366–3374.

    CAS  Google Scholar 

  70. Chala, T. F.; Wu, C. M.; Chou, M. H.; Guo, Z. L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl. Mater. Interfaces 2018, 10, 28955–28962.

    CAS  Google Scholar 

  71. Shang, M. Y.; Li, N.; Zhang, S. D.; Zhao, T. T.; Zhang, C.; Liu, C.; Li, H. F.; Wang, Z. Y. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Appl. Energy Mater. 2018, 1, 56–61.

    CAS  Google Scholar 

  72. Zhang, W.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Liu, R. P.; Qu, J. H. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation. ACS Appl. Mater. Interfaces 2019, 11, 9974–9983.

    CAS  Google Scholar 

  73. Song, C. Y.; Hao, L.; Zhang, B. Y.; Dong, Z. Y.; Tang, Q. Q.; Min, J. K.; Zhao, Q.; Niu, R.; Gong, J.; Tang, T. High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene. Sci. China Mater. 2020, 63, 779–793.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51871133), the Taishan Scholar Foundation of Shandong Province, the Key Research and Development Program of Shandong Province (No. 2021ZLGX01), and the program of Jinan Science and Technology Bureau (No. 2019GXRC001). The authors also thank the assistance from Prof. Kuibo Yin for TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Wang, Y., Zhang, Y. et al. Nanoporous black silver film with high porosity for efficient solar steam generation. Nano Res. 16, 5610–5618 (2023). https://doi.org/10.1007/s12274-022-5068-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5068-x

Keywords

Navigation