Skip to main content
Log in

Scalable nanocomposite parylene-based memristors: Multifilamentary resistive switching and neuromorphic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Memristors are promising candidates for synapse emulation in brain-inspired neuromorphic computing systems. The main obstacle to their usage in such systems is high variability of memristive characteristics and its severe negative effect on the neural network training. This paper addresses the issue from two points of view on the example of the parylene-based memristors: (i) the methods of the memristor internal stochasticity decrease and (ii) the methods of the memristive neural network architecture simplification. The introduction of an optimal Ag nanoparticle concentration (3 vol.%–6 vol.%) to the memristive structure leads to a statistically significant decrease in the switching voltage variation and endurance increase. Moreover, it is shown that post-fabrication annealing improves memristive characteristics, e.g., resistive switching window increases by an order of magnitude and exceeds 106, the switching voltage variation decreases by a factor of 2 (down to 7% for the set and 17% for the reset voltage), and thermostability is improved. Additional transmission electron microscopy and impedance spectroscopy analysis allowed establishing a multifilamentary resistive switching mechanism for nanocomposite parylene-based memristors. The simulation of the formal neural network based on these memristors demonstrates high classification accuracy with low variation for an important biomedical task, heart disease prediction, after careful feature selection and network architecture simplification. Future prospects of the controlled incorporation of the nanocomposite parylene-based memristors in neural networks are brightened by their scaling possibility in crossbar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190061.

    Google Scholar 

  2. Ielmini, D.; Wong, H. S. P. In–memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343.

    Article  Google Scholar 

  3. Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

    Article  CAS  Google Scholar 

  4. Kim, S.; Jung, S.; Kim, M. H.; Chen, Y. C.; Chang, Y. F.; Ryoo, K. C.; Cho, S.; Lee, J. H.; Park, B. G. Scaling effect on silicon nitride memristor with highly doped Si substrate. Small 2018, 14, 1704062.

    Article  Google Scholar 

  5. Pi, S.; Li, C.; Jiang, H.; Xia, W. W.; Xin, H. L.; Yang, J. J.; Xia, Q. F. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 2019, 14, 35–39.

    Article  CAS  Google Scholar 

  6. Wang, I. T.; Lin, Y. C.; Wang, Y. F.; Hsu, C. W.; Hou, T. H. 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation. In 2014 IEEE International Electron Devices Meeting, San Francisco, USA, 2015, pp 28.5.1-28.5.4.

  7. Torrezan, A. C.; Strachan, J. P.; Medeiros-Ribeiro, G.; Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 485203.

    Article  Google Scholar 

  8. Jiang, H.; Han, L. L.; Lin, P.; Wang, Z. R.; Jang, M. H.; Wu, Q.; Barnell, M.; Yang, J. J.; Xin, H. L.; Xia, Q. F. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 2016, 6, 28525.

    Article  Google Scholar 

  9. Nikiruy, K. E.; Emelyanov, A. V.; Demin, V. A.; Sitnikov, A. V.; Minnekhanov, A. A.; Rylkov, V. V.; Kashkarov, P. K.; Kovalchuk, M. V. Dopamine-like STDP modulation in nanocomposite memristors. AIP Adv. 2019, 9, 065116.

    Article  Google Scholar 

  10. Mikhaylov, A.; Pimashkin, A.; Pigareva, Y.; Gerasimova, S.; Gryaznov, E.; Shchanikov, S.; Zuev, A.; Talanov, M.; Lavrov, I.; Demin, V. et al. Neurohybrid memristive CMOS-integrated systems for biosensors and neuroprosthetics. Front. Neurosci. 2020, 14, 358.

    Article  Google Scholar 

  11. Xia, L. X.; Gu, P.; Li, B. X.; Tang, T. Q.; Yin, X. L.; Huangfu, W. Q.; Yu, S. M.; Cao, Y.; Wang, Y.; Yang, H. Z. Technological exploration of RRAM crossbar array for matrix-vector multiplication. J. Comput. Sci. Technol. 2016, 31, 3–19.

    Article  Google Scholar 

  12. Yuan, L.; Liu, S. Z.; Chen, W. L.; Fan, F.; Liu, G. Organic memory and memristors: From mechanisms, materials to devices. Adv. Electron. Mater. 2021, 7, 2100432.

    Article  CAS  Google Scholar 

  13. Lee, S. H.; Zhu, X. J.; Lu, W. D. Nanoscale resistive switching devices for memory and computing applications. Nano Res. 2020, 13, 1228–1243.

    Article  Google Scholar 

  14. Lee, S. H.; Park, H. L.; Keum, C. M.; Lee, I. H.; Kim, M. H.; Lee, S. D. Organic flexible memristor with reduced operating voltage and high stability by interfacial control of conductive filament growth. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900044.

    Article  Google Scholar 

  15. Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Erratum: Electrochemical metallization memories—Fundamentals, applications, prospects. Nanotechnology 2011, 22, 254003.

    Article  Google Scholar 

  16. Ielmini, D. Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31, 063002.

    Article  Google Scholar 

  17. Minnekhanov, A. A.; Emelyanov, A. V.; Lapkin, D. A.; Nikiruy, K. E.; Shvetsov, B. S.; Nesmelov, A. A.; Rylkov, V. V.; Demin, V. A.; Erokhin, V. V. Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 2019, 9, 10800.

    Article  Google Scholar 

  18. Huang, R.; Tang, Y.; Kuang, Y. B.; Ding, W.; Zhang, L. J.; Wang, Y. Y. Resistive switching in organic memory device based on parylene-C with highly compatible process for high-density and low-cost memory applications. IEEE Trans. Electron Devices 2012, 59, 3578–3582.

    Article  CAS  Google Scholar 

  19. Cai, Y. M.; Tan, J.; Liu, Y. F.; Lin, M.; Huang, R. A flexible organic resistance memory device for wearable biomedical applications. Nanotechnology 2016, 27, 275206.

    Article  Google Scholar 

  20. Chen, Q. Y.; Lin, M.; Wang, Z. W.; Zhao, X. L.; Cai, Y. M.; Liu, Q.; Fang, Y. C.; Yang, Y.; He, M.; Huang, R. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater. 2019, 5, 1800852.

    Article  Google Scholar 

  21. Shvetsov, B. S.; Matsukatova, A. N.; Minnekhanov, A. A.; Nesmelov, A. A.; Goncharov, B. V.; Lapkin, D. A.; Martyshov, M. N.; Forsh, P. A.; Rylkov, V. V.; Demin, V. A. et al. Poly-para-xylylene-based memristors on flexible substrates. Tech. Phys. Lett. 2019, 45, 1103–1106.

    Article  CAS  Google Scholar 

  22. Minnekhanov, A. A.; Shvetsov, B. S.; Emelyanov, A. V.; Chernoglazov, K. Y.; Kukueva, E. V.; Nesmelov, A. A.; Grishchenko, Y. V.; Zanaveskin, M. L.; Rylkov, V. V.; Demin, V. A. Parylene-based memristive synapses for hardware neural networks capable of dopamine-modulated STDP learning. J. Phys. D Appl. Phys. 2021, 54, 484002.

    Article  CAS  Google Scholar 

  23. Matsukatova, A. N.; Emelyanov, A. V.; Minnekhanov, A. A.; Demin, V. A.; Rylkov, V. V.; Forsh, P. A.; Kashkarov, P. K. Second-order nanoscale thermal effects in memristive structures based on poly-p-xylylene. JETP Lett. 2020, 112, 357–363.

    Article  CAS  Google Scholar 

  24. Matsukatova, A. N.; Emelyanov, A. V.; Minnekhanov, A. A.; Nesmelov, A. A.; Vdovichenko, A. Y.; Chvalun, S. N.; Rylkov, V. V.; Forsh, P. A.; Demin, V. A.; Kashkarov, P. K. et al. Resistive switching kinetics and second-order effects in parylene-based memristors. Appl. Phys. Lett. 2020, 117, 243501.

    Article  CAS  Google Scholar 

  25. Matsukatova, A. N.; Emelyanov, A. V.; Kulagin, V. A.; Vdovichenko, A. Y.; Minnekhanov, A. A.; Demin, V. A. Nanocomposite parylene-C memristors with embedded Ag nanoparticles for biomedical data processing. Org. Electron. 2022, 102, 106455.

    Article  CAS  Google Scholar 

  26. Kudryashov, M. A.; Mashin, A. I.; Logunov, A. A.; Chidichimo, G.; De Filpo, G. Frequency dependence of the electrical conductivity in Ag/PAN nanocomposites. Tech. Phys. 2012, 57, 965–970.

    Article  CAS  Google Scholar 

  27. Valov, I.; Tsuruoka, T. Effects of moisture and redox reactions in VCM and ECM resistive switching memories. J. Phys. D Appl. Phys. 2018, 51, 413001.

    Article  Google Scholar 

  28. van de Burgt, Y.; Melianas, A.; Keene, S. T.; Malliaras, G.; Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 2018, 7, 386–397.

    Article  Google Scholar 

  29. Mu, B. Y.; Hsu, H. H.; Kuo, C. C.; Han, S. T.; Zhou, Y. Organic small molecule-based RRAM for data storage and neuromorphic computing. J. Mater. Chem. C 2020, 8, 12714–12738.

    Article  CAS  Google Scholar 

  30. Lanza, M.; Waser, R.; Ielmini, D.; Yang, J. J.; Goux, L.; Suñe, J.; Kenyon, A. J.; Mehonic, A.; Spiga, S.; Rana, V. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 2021, 15, 17214–17231.

    Article  CAS  Google Scholar 

  31. Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275, 213–215.

    Article  CAS  Google Scholar 

  32. Prezioso, M.; Merrikh Bayat, F.; Hoskins, B.; Likharev, K.; Strukov, D. Self-adaptive spike-time-dependent plasticity of metal-oxide memristors. Sci. Rep. 2016, 6, 21331.

    Article  CAS  Google Scholar 

  33. Larentis, S.; Nardi, F.; Balatti, S.; Ielmini, D.; Gilmer, D. C. Bipolar-switching model of RRAM by field- and temperature-activated ion migration. In Proceedings of the 4th IEEE International Memory Workshop, Milano, Italy, 2012, pp 1–4.

  34. Kim, S.; Kim, S. J.; Kim, K. M.; Lee, S. R.; Chang, M.; Cho, E.; Kim, Y. B.; Kim, C. J.; Chung, U. I.; Yoo, I. K. Physical electrothermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 2013, 3, 1680.

    Article  Google Scholar 

  35. Marchewka, A.; Roesgen, B.; Skaja, K.; Du, H. C.; Jia, C. L.; Mayer, J.; Rana, V.; Waser, R.; Menzel, S. Nanoionic resistive switching memories: On the physical nature of the dynamic reset process. Adv. Electron. Mater. 2016, 2, 1500233.

    Article  Google Scholar 

  36. Minnekhanov, A. A.; Shvetsov, B. S.; Martyshov, M. M.; Nikiruy, K. E.; Kukueva, E. V.; Presnyakov, M. Y.; Forsh, P. A.; Rylkov, V. V.; Erokhin, V. V.; Demin, V. A. et al. On the resistive switching mechanism of parylene-based memristive devices. Org. Electron. 2019, 74, 89–95.

    Article  CAS  Google Scholar 

  37. Kotova, M. S.; Drozdov, K. A.; Dubinina, T. V.; Kuzmina, E. A.; Tomilova, L. G.; Vasiliev, R. B.; Dudnik, A. O.; Ryabova, L. I.; Khokhlov, D. R. In situ impedance spectroscopy of filament formation by resistive switches in polymer based structures. Sci. Rep. 2018, 8, 9080.

    Article  CAS  Google Scholar 

  38. Barsoukov, E.; Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; John Wiley & Sons: Hoboken, 2005.

    Book  Google Scholar 

  39. Menzel, S.; Böttger, U.; Waser, R. Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 2012, 111, 014501.

    Article  Google Scholar 

  40. Pytlak, K. Personal Key Indicators of Heart Disease [Online].https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease (accessed Aug 7, 2022).

  41. Siemon, A.; Ferch, S.; Heittmann, A.; Waser, R.; Wouters, D. J.; Menzel, S. Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels. APL Mater. 2019, 7, 091110.

    Article  Google Scholar 

  42. Wang, Z. R.; Li, C.; Song, W. H.; Rao, M. Y.; Belkin, D.; Li, Y. N.; Yan, P.; Jiang, H.; Lin, P.; Hu, M. et al. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2019, 2, 115–124.

    Article  Google Scholar 

  43. Shvetsov, B. S.; Minnekhanov, A. A.; Emelyanov, A. V.; Ilyasov, A. I.; Grishchenko, Y. V.; Zanaveskin, M. L.; Nesmelov, A. A.; Streltsov, D. R.; Patsaev, T. D.; Vasiliev, A. L. et al. Parylene-based memristive crossbar structures with multilevel resistive switching for neuromorphic computing. Nanotechnology 2022, 33, 255201.

    Article  Google Scholar 

  44. Streltsov, D. R.; Buzin, A. I.; Dmitryakov, P. V.; Kamasa, P.; Ivanov, D. A.; Chvalun, S. N. A study of p-xylylene polymerization kinetics using high-vacuum in situ differential scanning calorimetry. Thermochim. Acta 2016, 643, 65–72.

    Article  CAS  Google Scholar 

  45. Streltsov, D. R.; Mailyan, K. A.; Gusev, A. V.; Ryzhikov, I. A.; Kiryukhin, Y. I.; Orekhov, A. S.; Vasiliev, A. L.; Erina, N. A.; Pebalk, A. V.; Odarchenko, Y. I. et al. Structure and optical properties of thin poly(p-xylylene)-silver nanocomposite films prepared by low-temperature vapor deposition polymerization. Polymer 2015, 71, 60–69.

    Article  CAS  Google Scholar 

  46. Song, H. W.; Ilegbusi, O. J.; Trakhtenberg, L. I. Modeling vapor deposition of metal/semiconductor-polymer nanocomposite. Thin Solid Films 2005, 476, 190–195.

    Article  CAS  Google Scholar 

  47. Streltsov, D. R.; Mailyan, K. A.; Gusev, A. V.; Ryzhikov, I. A.; Erina, N. A.; Su, C. M.; Pebalk, A. V.; Ozerin, S. A.; Chvalun, S. N. Electrical properties, structure, and surface morphology of poly(p-xylylene)-silver nanocomposites synthesized by low-temperature vapor deposition polymerization. Appl. Phys. A 2013, 110, 413–422.

    Article  CAS  Google Scholar 

  48. Potdar, K.; Pardawala, T. S.; Pai, C. D. A comparative study of categorical variable encoding techniques for neural network classifiers. Int. J. Comput. Appl. 2017, 175, 7–9.

    Google Scholar 

  49. Kursa, M. B.; Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13.

    Article  Google Scholar 

  50. Flach, P.; Hernández-Orallo, J.; Ferri, C. A coherent interpretation of AUC as a measure of aggregated classification performance. In Proceedings of the 28th International Conference on International Conference on Machine Learning, Bellevue, USA, 2011, pp 657–664.

  51. Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J. Intern. Med. 2013, 4, 627–635.

    Google Scholar 

  52. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In KDD’ 19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019, pp 2623–2631.

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (project No. 18-79-10253). A. N. M. thanks the Theoretical Physics and Mathematics Advancement Foundation “AASIS” (No. 19-2-6-57-1) for support in the memristive characteristics investigation part and acknowledges financial support from the Non-commercial Foundation for the Advancement of Science and Education INTELLECT in the neural network simulation part.

Authors are thankful to Dr. V. V. Rylkov, Dr. A. A. Minnekhanov, Dr. A. L. Vasiliev (NRC “Kurchatov Institute”), and Dr. M. N. Martyshov (Lomonosov Moscow State University) for fruitful discussions and to Yu. V. Grishchenko (NRC “Kurchatov Institute”) for lithographic patterning of the bottom electrodes of crossbar structures.

Measurements were carried out with the equipment of the Resource Centres (NRC “Kurchatov Institute”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna N. Matsukatova or Andrey V. Emelyanov.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukatova, A.N., Vdovichenko, A.Y., Patsaev, T.D. et al. Scalable nanocomposite parylene-based memristors: Multifilamentary resistive switching and neuromorphic applications. Nano Res. 16, 3207–3214 (2023). https://doi.org/10.1007/s12274-022-5027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5027-6

Keywords

Navigation