Skip to main content
Log in

SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an important neurotransmitter, the detection of dopamine (DA) is of great significance for the diagnosis and treatment of neurological diseases. In this study, WO3-SnO2 nanoflake arrays were synthesized on fluorine-doped tin oxide (FTO) by hydrothermal synthesis and pulse electrodeposition, revealing significant surface-enhanced Raman scattering (SERS) activity with an enhancement factor (EF) reaching 4.79 × 107. The obvious EF was mainly ascribed to the charge transfer between WO3-SnO2 and methylene blue (MB) based on chemical mechanism (CM) and the molecular resonance effect. With the competitive adsorption of DA and absorbed MB, we prepared a SERS and electrochemical (EC) dual-mode detection platform of DA based on the WO3-SnO2 nanoflake arrays. The linear range (LR) was 5.00−1.75 × 103 nmol/L, and the detection limits (LODs) were as low as 1.50 and 0.80 nmol/L by SERS and EC respectively. Besides, the developed detection platform can shield the interference of many neurotransmitters similar to DA, showing good selectivity and excellent stability. In general, the SERS-EC dual-mode detection platform can be well applied to the detection of DA in cell lysate, demonstrating great potential in diagnosis of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banerjee, S.; McCracken, S.; Hossain, M. F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors 2020, 10, 101.

    Article  CAS  Google Scholar 

  2. Lakard, S.; Pavel, I. A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11, 179.

    Article  CAS  Google Scholar 

  3. Lan, Y. X.; Yuan, F.; Fereja, T. H.; Wang, C.; Lou, B. H.; Li, J. P.; Xu, G. B. Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal. Chem. 2019, 91, 2135–2139.

    Article  CAS  Google Scholar 

  4. Zhou, L.; Dong, H.; Yan, F.; Guo, W. L.; Su, B. Electrochemical detection of Alzheimer’s disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes. Analyst 2018, 143, 4756–4763.

    Article  CAS  Google Scholar 

  5. Yusoff, N.; Pandikumar, A.; Ramaraj, R.; Lim, H. N.; Huang, N. M. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 2015, 182, 2091–2114.

    Article  CAS  Google Scholar 

  6. Feng, J. J.; Zhao, Y. M.; Wang, H. Y. Colorimetric detection of dopamine based on silver nanoparticles. Chem. J. Chin. Univ. 2015, 36, 1269–1274.

    CAS  Google Scholar 

  7. Nishan, U.; Sabba, U.; Rahim, A.; Asad, M.; Shah, M.; Iqbal, A.; Iqbal, J.; Muhammad, N. Ionic liquid tuned titanium dioxide nanostructures as an efficient colorimetric sensing platform for dopamine detection. Mater. Chem. Phys. 2021, 262, 124289.

    Article  CAS  Google Scholar 

  8. Lin, Y. H.; Chen, C. E.; Wang, C. Y.; Pu, F.; Ren, J. S.; Qu, X. G. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem. Commun. 2011, 47, 1181–1183.

    Article  CAS  Google Scholar 

  9. Suzuki, Y. Development of fluorescent reagent based on ligand exchange reaction for the highly sensitive and selective detection of dopamine in the serum. Sensors 2019, 19, 3928.

    Article  CAS  Google Scholar 

  10. Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 7–15.

    Article  CAS  Google Scholar 

  11. Shen, C. F.; Zhang, Z. F.; Guo, Y. A.; Yan, G. Q. Research on development of dopamine fluorescence detection method based on CdSe/ZnS quantum dots. J. Instrum. Anal. 2016, 35, 949–954.

    Google Scholar 

  12. Saraji, M.; Shahvar, A. Selective micro solid-phase extraction of epinephrine, norepinephrine and dopamine from human urine and plasma using aminophenylboronic acid covalently immobilized on magnetic nanoparticles followed by high-performance liquid chromatography-fluorescence detection. Anal. Methods 2066, 8, 830–839.

    Article  Google Scholar 

  13. Rajper, A. D.; Arain, G. M.; Rind, F. M. A.; Khuhawar, M. Y. Spectrophotometric and liquid chromatographic determination of dopamine from pharmaceutical preparations using 2-hydroxynaphthaldehyde as derivatizing reagent. Asian J. Chem. 2007, 19, 4817–4824.

    CAS  Google Scholar 

  14. Eddin, F. B. K.; Fen, Y. W. Recent advances in electrochemical and optical sensing of dopamine. Sensors 2020, 20, 1039.

    Article  CAS  Google Scholar 

  15. Scaffidi, J. P.; Gregas, M. K.; Lauly, B.; Carter, J. C.; Angel, S. M.; Vo-Dinh, T. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering at a distance of 15 meters. Appl. Spectrosc. 2010, 64, 485–492.

    Article  CAS  Google Scholar 

  16. Figueiredo, M. L. B.; Martin, C. S.; Furini, L. N.; Rubira, R. J. G.; Batagin-Neto, A.; Alessio, P.; Constantino, C. J. L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species. Appl. Surf. Sci. 2020, 522, 146466.

    Article  CAS  Google Scholar 

  17. Zhu, W.; Feng, X. Q.; Liu, Z. D.; Zhao, M. H.; He, P.; Yang, S. W.; Tang, S. W.; Chen, D.; Guo, Q. L.; Wang, G. et al. Sensitive, reusable, surface-enhanced Raman scattering sensors constructed with a 3D graphene/Si hybrid. ACS Appl. Mater. Interfaces 2021, 13, 23081–23091.

    Article  CAS  Google Scholar 

  18. Zhou, Y.; Gu, Q. Y.; Qiu, T. Z.; He, X.; Chen, J. Q.; Qi, R. J.; Huang, R.; Zheng, T. T.; Tian, Y. Ultrasensitive sensing of volatile organic compounds using a Cu-doped SnO2—NiO p—n heterostructure that shows significant Raman enhancement. Angew. Chem., Int. Ed. 2021, 60, 26260–26267.

    Article  CAS  Google Scholar 

  19. Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.

    Article  CAS  Google Scholar 

  20. He, C. P.; Jing, P. P.; Wang, P. F.; Ji, J. M.; Ouyang, T.; Cui, Y. F.; Pu, Y. P. A novel hierarchical BaTiO3/AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant. Ceram. Int. 2021, 47, 33426–33434.

    Article  CAS  Google Scholar 

  21. Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

    Article  CAS  Google Scholar 

  22. Lin, S.; Hasi, W.; Han, S.; Lin, X.; Wang, L. A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal. Methods 2020, 12, 2571–2579.

    Article  CAS  Google Scholar 

  23. Zhou, H.; Zhang, J. S.; Li, B. X.; Liu, J.; Xu, J. J.; Chen, H. Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal. Chem. 2021, 93, 6120–6127.

    Article  CAS  Google Scholar 

  24. Gu, X. F.; Wang, K. Y.; Qiu, J. W.; Wang, Y. J.; Tian, S.; He, Z. K.; Zong, R.; Kraatz, H. B. Enhanced electrochemical and SERS signals by self-assembled gold microelectrode arrays: A dual readout platform for multiplex immumoassay of tumor biomarkers. Sensors Actuat. B: Chem. 2021, 334, 129674.

    Article  CAS  Google Scholar 

  25. Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.

    Article  CAS  Google Scholar 

  26. Cai, G. F.; Zhou, D.; Xiong, Q. Q.; Zhang, J. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol. Energy Mater. Sol. Cells 2013, 117, 231–238.

    Article  CAS  Google Scholar 

  27. Zhou, J. W.; Wang, W. Y.; Yu, P.; Xiong, E. H.; Zhang, X. H.; Chen, J. H. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv. 2014, 4, 52250–52255.

    Article  CAS  Google Scholar 

  28. Munawar, T.; Mukhtar, F.; Nadeem, M. S.; Manzoor, S.; Ashiq, M. N.; Mahmood, K.; Batool, S.; Hasan, M.; Iqbal, F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J. Alloys Compd. 2022, 898, 162779.

    Article  CAS  Google Scholar 

  29. Nivetha, M. R. S.; Kumar, J. V.; Ajarem, J. S.; Allam, A. A.; Manikandan, V.; Arulmozhi, R.; Abirami, N. Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ. Res. 2022, 209, 112809.

    Article  CAS  Google Scholar 

  30. Kato, K.; Shirai, T. Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. J. Alloys Compd. 2022, 901, 163434.

    Article  CAS  Google Scholar 

  31. Kumar, S.; Sharma, M.; Aljawfi, R. N.; Chae, K. H.; Kumar, R.; Dalela, S.; Alshoaibi, A.; Ahmed, F.; Alvi, P. A. Tailoring the structural, electronic structure and optical properties of Fe:SnO2 nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 2020, 240, 146934.

    Article  CAS  Google Scholar 

  32. Liu, X. Y.; Zhou, Y.; Zheng, T. T.; Tian, Y. Surface-enhanced Raman scattering technology based on WO3 film for detection of VEGF. Chem. Res. Chin. Univ. 2021, 37, 900–905.

    Article  CAS  Google Scholar 

  33. Morrish, R.; Haak, T.; Wolden, C. A. Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 2014, 26, 3986–3992.

    Article  CAS  Google Scholar 

  34. Baranauskas, V.; Fontana, M.; Guo, Z. J.; Ceragioli, H. J.; Peterlevitz, A. C. Field-emission properties of nanocrystalline tin oxide films. Sensors Actuat. B: Chem. 2005, 107, 474–478.

    Article  CAS  Google Scholar 

  35. Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309.

    Article  CAS  Google Scholar 

  36. Al-Mustafa, J. I. FTIR investigation of the conformational properties of the cyanide bound horse metmyoglobin. Vib. Spectrosc. 2003, 31, 89–99.

    Article  CAS  Google Scholar 

  37. Tao, Y.; Lin, Y. H.; Ren, J. S.; Qu, X. G. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 42, 41–16.

    Article  CAS  Google Scholar 

  38. Lai, C. C. J.; Chen, C. H.; Ko, F. H. In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J. Chromatogr. A 2004, 1023, 143–150.

    Article  CAS  Google Scholar 

  39. He, E. H.; Xu, S. W.; Dai, Y. C.; Wang, Y. D.; Xiao, G. H.; Xie, J. Y.; Xu, S. H.; Fan, P. H.; Mo, F.; Wang, M. X. et al. SWCNTs/PEDOT: PSS-modified microelectrode arrays for dual-mode detection of electrophysiological signals and dopamine concentration in the striatum under isoflurane anesthesia. ACS Sens. 2021, 6, 3377–3386.

    Article  CAS  Google Scholar 

  40. Saxer, C.; Niina, M.; Nakashima, A.; Nagae, Y.; Masuda, N. Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection. J. Chromatogr. B 2004, 802, 299–305.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are greatly grateful for the financial support from the National Natural Science Foundation of China (No. 21827814 for Y. T., No. 21974049 for T. T. Z.). Besides, this work was funded by Shanghai Rising-star Program (No. 20QA1403300) and Innovation Program of Shanghai Municipal Education Commission (No. 201701070005E00020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Zheng or Yang Tian.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zhou, Y., Zheng, T. et al. SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Res. 16, 4049–4054 (2023). https://doi.org/10.1007/s12274-022-4984-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4984-0

Keywords

Navigation