Skip to main content
Log in

Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fabricating three-dimensional (3D) composite lithium anodes via thermal infusion effectively addresses uncontrollable Li deposition and large volume changes. However, potential risks due to the long wetting time and high melting point remain a critical yet unconsidered issue. Herein, we report a stable 3D composite Li anode by infusing molten Li into a 3D scaffold within 3 s at 220 °C. The key-enabling technique is the growth of a lithiophilic Mg-Al double oxide (LDO) nanosheet array layer on the scaffold. The in-situ formed lithiophilic alloy, combined with the capillary forces from the nanosheet arrays, enabled the transient infiltration of molten Li. In addition, the formed high ionic-conductivity Li phase can help construct a robust solid electrolyte interphase (SEI), stabilize the Li anode/electrolyte interface, and guide uniform Li deposition. The 3D composite anode exhibited a long cycling life of 1,000 h under a current density of 1 mA·cm−2 and over 1,600 h under a current density of 2 mA·cm−2 with a high areal capacity of 4 mAh·cm−2 in Li/Li symmetric cells. The 3D composite anodes paired with high areal capacity LiFePO4 (LFP) and S cathodes demonstrate its practical application feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Niu, C. J.; Liu, D. Y.; Lochala, J. A.; Anderson, C. S.; Cao, X.; Gross, M. E.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 2021, 6, 723–732.

    Article  CAS  Google Scholar 

  2. Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

    Article  CAS  Google Scholar 

  3. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  4. Duan, J.; Tang, X.; Dai, H. F.; Yang, Y.; Wu, W. Y.; Wei, X. Z.; Huang, Y. H. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem. Energy Rev. 2020, 3, 1–42.

    Article  CAS  Google Scholar 

  5. Li, Y. N.; Wang, C. Y.; Gao, R. M.; Cao, F. F.; Ye, H. Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Mater. 2021, 38, 262–275.

    Article  Google Scholar 

  6. Zhang, H.; Li, C. M.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T. et al. From solid-solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem., Int. Ed. 2020, 59, 534–538.

    Article  CAS  Google Scholar 

  7. Liang, Y. H.; Liu, H.; Wang, G. X.; Wang, C.; Ni, Y.; Nan, C. W.; Fan, L. Z. Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat 2022, 4, e12292.

    Article  CAS  Google Scholar 

  8. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

    Article  CAS  Google Scholar 

  9. Li, S. Q.; Wang, K.; Zhang, G. F.; Li, S. N.; Xu, Y. A.; Zhang, X. D.; Zhang, X.; Zheng, S. H.; Sun, X. Z.; Ma, Y. W. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796.

    Article  CAS  Google Scholar 

  10. Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Wang, X. T.; Zhao, X. X.; Li, W. H.; Yu, H. Y.; Wu, X. L. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 2022, 15, 2200796.

    Google Scholar 

  11. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

    Article  CAS  Google Scholar 

  12. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  13. Sun, J. P.; Zhang, K.; Fu, Y. Z.; Guo, W. Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Res., in press, https://doi.org/10.1007/s12274-022-4361-z.

  14. Wu, D. X.; He, J.; Liu, J. D.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Huang, J. D.; Li, F.; Tang, D. L.; Ma, J. M. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 2022, 12, 2200337.

    Article  CAS  Google Scholar 

  15. Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

    Article  CAS  Google Scholar 

  16. Chen, C.; Liang, Q. W.; Wang, G.; Liu, D. D.; Xiong, X. H. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 2021, 32, 2107249.

    Article  Google Scholar 

  17. Dong, Q. Y.; Hong, B.; Fan, H. L.; Gao, C. H.; Huang, X. J.; Bai, M. H.; Zhou, Y. E.; Lai, Y. Q. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode. Energy Storage Mater. 2022, 45, 1220–1228.

    Article  Google Scholar 

  18. Qin, J. Q.; Shi, H. D.; Huang, K.; Lu, P. F.; Wen, P. C.; Xing, F. F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z. S. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786.

    Article  CAS  Google Scholar 

  19. Zhang, Y.; Wang, C. W.; Pastel, G.; Kuang, Y. D.; Xie, H.; Li, Y. J.; Liu, B. Y.; Luo, W.; Chen, C. J.; Hu, L. B. 3D wettable framework for dendrite-free alkali metal anodes. Adv. Energy Mater. 2018, 8, 1800635.

    Article  Google Scholar 

  20. Yu, C.; Du, Y.; He, R. H.; Ma, Y.; Liu, Z. H.; Li, X. Y.; Luo, W.; Zhou, L.; Mai, L. Q. Hollow SiOx/C microspheres with semigraphitic carbon coating as the “lithium host” for dendrite-free lithium metal anodes. ACS Appl. Energy Mater. 2021, 4, 3905–3912.

    Article  CAS  Google Scholar 

  21. Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764–777.

    Article  CAS  Google Scholar 

  22. Feng, Y. Q.; Zheng, Z. J.; Wang, C. Y.; Yin, Y. X.; Ye, H.; Cao, F. F.; Guo, Y. G. A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy 2020, 73, 104731.

    Article  CAS  Google Scholar 

  23. Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.

    Article  CAS  Google Scholar 

  24. Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

    Article  CAS  Google Scholar 

  25. Kim, M. S.; Ryu, J. H.; Deepika; Lim, Y. R.; Nah, I. W.; Lee, K. R.; Archer, L. A.; Cho, W. I. Langmuir-blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nat. Energy 2018, 3, 889–898.

    Article  CAS  Google Scholar 

  26. Wen, P. C.; Lu, P. F.; Shi, X. Y.; Yao, Y.; Shi, H. D.; Liu, H. Q.; Yu, Y.; Wu, Z. S. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solidstate sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930.

    Article  CAS  Google Scholar 

  27. Lai, X. J.; Xu, Z. M.; Yang, X. F.; Ke, Q. J.; Xu, Q. S.; Wang, Z. S.; Lu, Y. Y.; Qiu, Y. C. Long cycle life and high-rate sodium metal batteries enabled by regulating 3D frameworks with artificial solid-state interphases. Adv. Energy Mater. 2022, 12, 2103540.

    Article  CAS  Google Scholar 

  28. Qiu, G. R.; Shi, Y. P.; Huang, B. L. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 2022, 15, 5153–5160.

    Article  CAS  Google Scholar 

  29. Yao, Y.; Wei, Z. Y.; Wang, H. Y.; Huang, H. J.; Jiang, Y.; Wu, X. J.; Yao, X. Y.; Wu, Z. S.; Yu, Y. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 2020, 10, 1903698.

    Article  CAS  Google Scholar 

  30. Chen, Z. G.; Chen, W. M.; Wang, H. X.; Zhang, C.; Qi, X. Q.; Qie, L.; Wu, F. S.; Wang, L.; Yu, F. Q. Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition. Nano Energy 2022, 93, 106836.

    Article  CAS  Google Scholar 

  31. Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

    Article  Google Scholar 

  32. Zhang, R.; Wen, S. W.; Wang, N.; Qin, K. Q.; Liu, E. Z.; Shi, C. S.; Zhao, N. Q. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv. Energy Mater. 2018, 8, 1800914.

    Article  Google Scholar 

  33. Wang, C. Y.; Yang, C. P.; Zheng, Z. J. Toward practical high-energy and high-power lithium battery anodes: Present and future. Adv. Sci. 2022, 9, 2105213.

    Article  CAS  Google Scholar 

  34. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress in designing stable composite lithium anodes with improved wettability. Adv. Sci. 2020, 7, 2002212.

    Article  CAS  Google Scholar 

  35. Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

    Article  Google Scholar 

  36. Wang, C. W.; Gong, Y. H.; Liu, B. Y.; Fu, K.; Yao, Y. G.; Hitz, E.; Li, Y. J.; Dai, J. Q.; Xu, S. M.; Luo, W. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 2017, 17, 565–571.

    Article  CAS  Google Scholar 

  37. Zhu, Y. Y.; Zhang, Y.; Das, P.; Wu, Z. S. Recent advances in interface engineering and architecture design of air-stable and water-resistant lithium metal anodes. Energy Fuels 2021, 35, 12902–12920.

    Article  CAS  Google Scholar 

  38. Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solidstate lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.

    Article  Google Scholar 

  39. Gasior, W.; Moser, Z.; Zakulski, W.; Schwitzgebel, G. Thermodynamic studies and the phase diagram of the Li-Mg system. Metall. Mater. Trans. A 1996, 27, 2419–2428.

    Article  Google Scholar 

  40. Krauskopf, T.; Mogwitz, B.; Rosenbach, C.; Zeier, W. G.; Janek, J. Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 2019, 9, 1902568.

    Article  CAS  Google Scholar 

  41. Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Yu, X. B. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 2022, 8, eabl8245.

    Article  CAS  Google Scholar 

  42. Chowdari, B. V. R.; Rao, G. V. S.; Lee, G. Y. H. XPS and ionic conductivity studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 glasceramics. Solid State Ionics 2000, 136-137, 1067–1075.

    Article  Google Scholar 

  43. Yao, K. P. C.; Kwabi, D. G.; Quinlan, R. A.; Mansour, A. N.; Grimaud, A.; Lee, Y. L.; Lu, Y. C.; Shao-Horn, Y. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 2013, 160, A824–A831.

    Article  CAS  Google Scholar 

  44. Wu, M. J.; Jiang, F.; Jiang, J. Y. Study on oxidation behavior of Al-Mg-Sc alloy. Mater. Lett. 2022, 313, 131723.

    Article  CAS  Google Scholar 

  45. Rosenberger, L.; Baird, R.; McCullen, E.; Auner, G.; Shreve, G. XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 2008, 40, 1254–1261.

    Article  CAS  Google Scholar 

  46. Guo, R.; Gallant, B. M. Li2O solid electrolyte interphase: Probing transport properties at the chemical potential of lithium. Chem. Mater. 2020, 32, 5525–5533.

    Article  CAS  Google Scholar 

  47. Kondo, T.; Ito, K.; Ohama, A.; Aoki, M.; Noguchi, H.; Kubo, Y. In situ grazing incidence surface X-ray diffraction study of Li2O ultra-thin film formation on Li and its effect of suppressing dendrite formation during charging and discharging. Chem. Lett. 2022, 51, 552–555.

    Article  CAS  Google Scholar 

  48. Xu, Y. L.; Dong, K.; Jie, Y. L.; Adelhelm, P.; Chen, Y. W.; Xu, L.; Yu, P. P.; Kim, J.; Kochovski, Z.; Yu, Z. L. et al. Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: Recent progress, limitations, and future perspectives. Adv. Energy Mater. 2022, 12, 2200398.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975091, 21805105, and 21773078), the Natural Science Foundation of Hubei Province (No. 2019CFA046), and the Fundamental Research Funds for the Central Universities of China (No. 2662021JC004). This work is also thanks to Siyuan Zeng, Lotus Zhang, and Carol Wang for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei-Fei Cao or Huan Ye.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LX., Li, YN., Cao, FF. et al. Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes. Nano Res. 16, 8297–8303 (2023). https://doi.org/10.1007/s12274-022-4981-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4981-3

Keywords

Navigation