Skip to main content
Log in

Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries. However, their working mechanisms are still mysterious, especially in practical high-voltage LiCoO2 pouch lithium-ion batteries. Herein, we adopt a tridentate ligand-containing 1,3,6-hexanetricarbonitrile (HTCN) as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO2 cathode (4.5 V) through nitriles. The LiCoO2/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance, 90% retention of the initial capacity after 800 cycles at 25 °C, and 72% retention after 500 cycles at 45 °C, which is feasible for practical application. Such an excellent cycling performance can be attributed to the stable interface: The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase (CEI) through coordinating with Co ions, which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO2 during cycling. In summary, the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO2 cathode with appropriate electrolyte additives for practical pouch batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

    CAS  Google Scholar 

  2. Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.

    CAS  Google Scholar 

  3. Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y. I.; Huang, B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 1998, 392, 694–696.

    CAS  Google Scholar 

  4. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  5. Zhang, X. D.; Yue, F. S.; Liang, J. Y.; Shi, J. L.; Li, H.; Guo, Y. G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress. Small Struct. 2020, 1, 2000042.

    Google Scholar 

  6. Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.

    CAS  Google Scholar 

  7. Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

    CAS  Google Scholar 

  8. Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.

    CAS  Google Scholar 

  9. MacNeil, D. D.; Dahn, J. R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J. Electrochem. Soc. 2002, 149, A912–A919.

    CAS  Google Scholar 

  10. Mao, S. L.; Shen, Z. Y.; Zhang, W. D.; Wu, Q.; Wang, Z. Y.; Lu, Y. Y. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. 2022, 9, 2104841.

    CAS  Google Scholar 

  11. Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Chen, S.; Wu, F. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities. Acta Phys. Chim. Sin. 2021, 37, 2005062.

    Google Scholar 

  12. Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Localized surface doping for improved stability of high energy cathode materials. Acta Phys. Chim. Sin. 2021, 37, 2011007.

    Google Scholar 

  13. Qian, J. W.; Liu, L.; Yang, J. X.; Li, S. Y.; Wang, X.; Zhuang, H. L.; Lu, Y. Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 2018, 9, 4918.

    Google Scholar 

  14. Klein, S.; Harte, P.; van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2, 100521.

    CAS  Google Scholar 

  15. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

    CAS  Google Scholar 

  16. Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review. Energy Environ. Sci. 2018, 11, 243–257.

    CAS  Google Scholar 

  17. Joshi, T.; Eom, K.; Yushin, G.; Fuller, T. F. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A1915–A1921.

    Google Scholar 

  18. Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

    CAS  Google Scholar 

  19. Markevich, E.; Salitra, G.; Aurbach, D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017, 2, 1337–1345.

    CAS  Google Scholar 

  20. Chen, Y.; Zhao, W. M.; Zhang, Q. H.; Yang, G. Z.; Zheng, J. M.; Tang, W.; Xu, Q. J.; Lai, C. Y.; Yang, J. H.; Peng, C. X. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic-inorganic hybrid interphase layer toward durable high rate battery. Adv. Funct. Mater. 2020, 30, 2000396.

    CAS  Google Scholar 

  21. Su, C. C.; He, M. N.; Amine, R.; Chen, Z. H.; Sahore, R.; Dietz Rago, N.; Amine, K. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Mater. 2019, 17, 284–292.

    Google Scholar 

  22. Yu, Z. A.; Yu, W. L.; Chen, Y. L.; Mondonico, L.; Xiao, X.; Zheng, Y.; Liu, F.; Hung, S. T.; Cui, Y.; Bao, Z. N. Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 040555.

    CAS  Google Scholar 

  23. Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li‖NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 2022, 15, 2435–2444.

    CAS  Google Scholar 

  24. Aurbach, D.; Markevich, E.; Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic Co-solvents. J. Am. Chem. Soc. 2021, 143, 21161–21176.

    CAS  Google Scholar 

  25. Tan, S.; Shadike, Z.; Li, J. Z.; Wang, X. L.; Yang, Y.; Lin, R. Q.; Cresce, A.; Hu, J. T.; Hunt, A.; Waluyo, I. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 2022, 7, 484–494.

    CAS  Google Scholar 

  26. Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl. Mater. Interfaces 2019, 11, 17435–17443.

    CAS  Google Scholar 

  27. Li, Y. C.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X. G. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 2017, 7, 1601397.

    Google Scholar 

  28. Li, Y. C.; Veith, G. M.; Browning, K. L.; Chen, J. H.; Hensley, D. K.; Paranthaman, M. P.; Dai, S.; Sun, X. G. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy 2017, 40, 9–19.

    CAS  Google Scholar 

  29. Yue, H. Y.; Yang, Y. E.; Xiao, Y.; Dong, Z. Y.; Cheng, S. G.; Yin, Y. H.; Ling, C.; Yang, W. G.; Yu, Y. H.; Yang, S. T. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries. J. Mater. Chem. A 2019, 7, 594–602.

    CAS  Google Scholar 

  30. Madec, L.; Xia, J.; Petibon, R.; Nelson, K. J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. Effect of sulfate electrolyte additives on LiNi1/3Mn1/3Co1/3O2/graphite pouch cell lifetime: Correlation between XPS surface studies and electrochemical test results. J. Phys. Chem. C 2014, 118, 29608–29622.

    CAS  Google Scholar 

  31. Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L. et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries. Adv. Energy Mater. 2018, 8, 1701398.

    Google Scholar 

  32. Lin, Y. L.; Xu, M. Q.; Wu, S. P.; Tian, Y. Y.; Cao, Z. G.; Xing, L. D.; Li, W. S. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD). ACS Appl. Mater. Interfaces 2018, 10, 16400–16409.

    CAS  Google Scholar 

  33. Kim, Y. S.; Kim, T. H.; Lee, H.; Song, H. K. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy Environ. Sci. 2011, 4, 4038–4045.

    CAS  Google Scholar 

  34. Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adiponitrile (C6H8N2): A new bi-functional additive for high-performance Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902496.

    Google Scholar 

  35. Yang, X. R.; Lin, M.; Zheng, G. R.; Wu, J.; Wang, X. S.; Ren, F. C.; Zhang, W. G.; Liao, Y.; Zhao, W. M.; Zhang, Z. R. et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 2020, 30, 2004664.

    CAS  Google Scholar 

  36. Ruan, D. G.; Chen, M.; Wen, X. Y.; Li, S. Q.; Zhou, X. G.; Che, Y. X.; Chen, J. K.; Xiang, W. J.; Li, S. L.; Wang, H. et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021, 90, 106535.

    CAS  Google Scholar 

  37. Fu, A.; Lin, J. D.; Zhang, Z. F.; Xu, C. J.; Zou, Y.; Liu, C. Y.; Yan, P. F.; Wu, D. Y.; Yang, Y.; Zheng, J. M. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li//LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett. 2022, 7, 1364–1373.

    CAS  Google Scholar 

  38. Ping, P.; Wang, Q. S.; Sun, J. H.; Xia, X.; Dahn, J. R. Studies of the effect of triphenyl phosphate on positive electrode symmetric Li-ion cells. J. Electrochem. Soc. 2012, 159, A1467–A1473.

    CAS  Google Scholar 

  39. Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

    Google Scholar 

  40. Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67–71.

    CAS  Google Scholar 

  41. Zhao, W. M.; Zheng, B. Z.; Liu, H. D.; Ren, F. C.; Zhu, J. P.; Zheng, G. R.; Chen, S. J.; Liu, R.; Yang, X. R.; Yang, Y. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy 2019, 63, 103815.

    CAS  Google Scholar 

  42. Yang, X. R.; Chen, J. W.; Zheng, Q. F.; Tu, W. Q.; Xing, L. D.; Liao, Y. H.; Xu, M. Q.; Huang, Q. M.; Cao, G. Z.; Li, W. S. Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J. Mater. Chem. A 2018, 6, 16149–16163.

    CAS  Google Scholar 

  43. Ye, C. C.; Tu, W. Q.; Yin, L. M.; Zheng, Q. F.; Wang, C.; Zhong, Y. T.; Zhang, Y. G.; Huang, Q. M.; Xu, K.; Li, W. S. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 2018, 6, 17642–17652.

    CAS  Google Scholar 

  44. Ma, Q. T.; Zhang, X. Y.; Wang, A. X.; Xia, Y. Y.; Liu, X. J.; Luo, J. Y. Stabilizing solid electrolyte interphases on both anode and cathode for high areal capacity, high-voltage lithium metal batteries with high Li utilization and lean electrolyte. Adv. Funct. Mater. 2020, 30, 2002824.

    CAS  Google Scholar 

  45. Zhi, H. Z.; Xing, L. D.; Zheng, X. W.; Xu, K.; Li, W. S. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. J. Phys. Chem. Lett. 2017, 8, 6048–6052.

    CAS  Google Scholar 

  46. Xian, F.; Li, J. D.; Hu, Z. L.; Zhou, Q.; Wang, C.; Lu, C. L.; Zhang, Z. Y.; Dong, S. M.; Mou, C. B.; Cui, G. L. Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 2020, 56, 4998–5001.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0206700 and 2017YFA0402802), the National Natural Science Foundation of China (Nos. 21776265 and 51902304), and Anhui Provincial Natural Science Foundation (No. 1908085ME122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Yan, Yuhao Lu or Shuhong Jiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Chen, Y., Zhang, Z. et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Res. 16, 3864–3871 (2023). https://doi.org/10.1007/s12274-022-4955-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4955-5

Keywords

Navigation