Skip to main content
Log in

Wrinkling modes of graphene oxide assembled on curved surfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Assembling two-dimensional (2D) sheets into macroscopic three-dimensional (3D) forms has created a promising material family with rich functionalities. Multiscale wrinkles are intrinsic features of 2D sheets in their 3D assembles. Therefore, the precise wrinkling modulation optimizes the transition of outstanding properties of 2D sheets to expected performances of assembled materials and dominates their fabrication process. The wrinkling evolution of 2D sheets assembling onto flat surfaces has been extensively understood, however, the wrinkling behaviors on the more generally curved surface still remain unclear. Here, we investigate the wrinkling behaviors of graphene oxide sheets assembled onto curved surfaces and reveal the selection rule of wrinkling modes that determined by the curvature mismatch between 2D sheets and target surfaces. We uncover that three wrinkling modes including isotropic cracked land, labyrinth, and anisotropic curtain phases, respectively emerge on flat, spherical, and cylindrical surfaces. A favorable description paradigm is offered to quantitatively measure the complex wrinkling patterns and assess the curvature mismatch constraint underlying the wrinkling mode selection. This research provides a general and quantitative description framework of wrinkling modulation of 2D materials such as high performance graphene fibers, and guides the precise fabrication of particles and functional coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, J. H.; Zhao, H. R.; Yu, H. B. Bio-inspired multifunctional graphene-epoxy anticorrosion coatings by low-defect engineered graphene. ACS Nano 2022, 16, 710–720.

    Article  CAS  Google Scholar 

  2. Cao, C.; Lin, Z. K.; Liu, X. C.; Jia, Y. Y.; Saiz, E.; Wolf, S. E.; Wagner, H. D.; Jiang, L.; Cheng, Q. Strong reduced graphene oxide coated Bombyx mori silk. Adv. Funct. Mater. 2021, 31, 2102923.

    Article  CAS  Google Scholar 

  3. Shen, X.; Wang, Z. Y.; Wu, Y.; Liu, X.; He, Y. B.; Kim, J. K. Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 2016, 16, 3585–3593.

    Article  CAS  Google Scholar 

  4. Ming, X.; Wei, A. R.; Liu, Y. J.; Peng, L.; Li, P.; Wang, J. Q.; Liu, S. P.; Fang, W. Z.; Wang, Z. Q.; Peng, H. Q. et al. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv. Mater. 2022, 34, 2201867.

    Article  CAS  Google Scholar 

  5. Li, P.; Liu, Y. J.; Shi, S. Y.; Xu, Z.; Ma, W. G.; Wang, Z. Q.; Liu, S. P.; Gao, C. Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv. Funct. Mater. 2020, 30, 2006584.

    Article  CAS  Google Scholar 

  6. Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Q. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 2014, 26, 7588–7592.

    Article  CAS  Google Scholar 

  7. Li, P.; Yang, M. C.; Liu, Y. J.; Qin, H. S.; Liu, J. R.; Xu, Z.; Liu, Y. L.; Meng, F. X.; Lin, J. H.; Wang, F. et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645.

    Article  CAS  Google Scholar 

  8. Wen, Y. Y.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Topological design of ultrastrong and highly conductive graphene films. Adv. Mater. 2017, 29, 1702831.

    Article  Google Scholar 

  9. Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

    Article  Google Scholar 

  10. Lin, J. H.; Li, P.; Liu, Y. J.; Wang, Z. Q.; Wang, Y.; Ming, X.; Gao, C.; Xu, Z. The origin of the sheet size predicament in graphene macroscopic papers. ACS Nano 2021, 15, 4824–4832.

    Article  CAS  Google Scholar 

  11. Cheng, X. L.; Miao, L. M.; Su, Z. M.; Chen, H. T.; Song, Y.; Chen, X. X.; Zhang, H. X. Controlled fabrication of nanoscale wrinkle structure by fluorocarbon plasma for highly transparent triboelectric nanogenerator. Microsyst. Nanoeng. 2017, 3, 16074.

    Article  CAS  Google Scholar 

  12. Sakorikar, T.; Vayalamkuzhi, P.; Jaiswal, M. Geometry dependent performance limits of stretchable reduced graphene oxide interconnects: The role of wrinkles. Carbon 2020, 158, 864–872.

    Article  CAS  Google Scholar 

  13. Hu, H. Q.; Xia, K. L.; Zhao, S. J.; Ma, M.; Zheng, Q. S. Eliminating graphene wrinkles by strain engineering. Extreme Mech. Lett. 2021, 42, 101104.

    Article  Google Scholar 

  14. Rhee, D.; Paci, J. T.; Deng, S. K.; Lee, W. K.; Schatz, G. C.; Odom, T. W. Soft skin layers enable area-specific, multiscale graphene wrinkles with switchable orientations. ACS Nano 2020, 14, 166–174.

    Article  CAS  Google Scholar 

  15. Wang, C. G.; Lan, L.; Liu, Y. P.; Tan, H. F. Defect-guided wrinkling in graphene. Comput. Mater. Sci. 2013, 77, 250–253.

    Article  CAS  Google Scholar 

  16. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

    Article  Google Scholar 

  17. Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

    Article  Google Scholar 

  18. Yoo, B. M.; Shin, J. E.; Lee, H. D.; Park, H. B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng. 2017, 16, 39–47.

    Article  Google Scholar 

  19. Park, M. J.; Kim, Y.; Kim, Y.; Hong, B. H. Continuous films of self-assembled graphene quantum dots for n-type doping of graphene by UV-triggered charge transfer. Small 2017, 13, 1603142.

    Article  Google Scholar 

  20. Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. H. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

    Article  CAS  Google Scholar 

  21. Chen, P. Y.; Liu, M. C.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. From flatland to spaceland: Higher dimensional patterning with two-dimensional materials. Adv. Mater. 2017, 29, 1605096.

    Article  Google Scholar 

  22. Breid, D.; Crosby, A. J. Curvature-controlled wrinkle morphologies. Soft Matter 2013, 9, 3624–3630.

    Article  CAS  Google Scholar 

  23. Zheng, S. Y.; Ding, H. Y.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y. H.; Zheng, Q. Metal-coordination complexes mediated physical hydrogels with high toughness, stick-slip tearing behavior, and good processability. Macromolecules 2016, 49, 9637–9646.

    Article  CAS  Google Scholar 

  24. Zhao, X. L.; Gao, W. W.; Yao, W. Q.; Jiang, Y. Q.; Xu, Z.; Gao, C. Ion diffusion-directed assembly approach to ultrafast coating of graphene oxide thick multilayers. ACS Nano 2017, 11, 9663–9670.

    Article  CAS  Google Scholar 

  25. Lai, B. S.; Zhang, L. L. Existences of periodic solutions to the generalized Swift-Hohenberg equation on symmetry-breaking model. Appl. Math. Lett. 2020, 103, 106206.

    Article  Google Scholar 

  26. Savelev, R. S.; Gorlach, M. A.; Poddubny, A. N. Topological interface states mediated by spontaneous symmetry breaking. Phys. Rev. B 2018, 98, 045415.

    Article  CAS  Google Scholar 

  27. Riccobelli, D.; Ciarletta, P. Shape transitions in a soft incompressible sphere with residual stresses. Math. Mech. Solids 2018, 23, 1507–1524.

    Article  Google Scholar 

  28. Du, L. J.; Hasan, T.; Castellanos-Gomez, A.; Liu, G. B.; Yao, Y. G.; Lau, C. N.; Sun, Z. P. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 2021, 3, 193–206.

    Article  CAS  Google Scholar 

  29. Zhao, Y.; Zhu, H. L.; Jiang, C.; Cao, Y. P.; Feng, X. Q. Wrinkling pattern evolution on curved surfaces. J. Mech. Phys. Solids 2020, 135, 103798.

    Article  Google Scholar 

  30. Kim, D. S.; Yoon, D. K. Curvatures of smectic liquid crystals and their applications. J. Inf. Disp. 2018, 19, 7–23.

    Article  Google Scholar 

  31. Jiang, Y. Q.; Wang, Y.; Xu, Z.; Gao, C. Conformation engineering of two-dimensional macromolecules: A case study with graphene oxide. Acc. Mater. Res. 2020, 1, 175–187.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Wang, S. J.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S. P.; Guo, F.; He, Y. H.; Li, Z. S.; Xu, Z. P. et al. Conformational phase map of two-dimensional macromolecular graphene oxide in solution. Matter 2020, 3, 230–245.

    Article  Google Scholar 

  33. Hohlfeld, E.; Davidovitch, B. Sheet on a deformable sphere: Wrinkle patterns suppress curvature-induced delamination. Phys. Rev. E 2015, 91, 012407.

    Article  Google Scholar 

  34. Zhu, L. L.; Yuan, H. Z.; Wu, K.; Wang, X. R.; Liu, G.; Sun, J.; Liao, X. B.; Chen, X. Curvature-controlled delamination patterns of thin films on spherical substrates. iScience 2021, 24, 102616.

    Article  CAS  Google Scholar 

  35. Wang, T.; Yang, Y. F.; Fu, C. B.; Liu, F.; Wang, K.; Xu, F. Wrinkling and smoothing of a soft shell. J. Mech. Phys. Solids 2020, 134, 103738.

    Article  Google Scholar 

  36. Jia, F.; Pearce, S. P.; Goriely, A. Curvature delays growth-induced wrinkling. Phys. Rev. E 2018, 98, 033003.

    Article  CAS  Google Scholar 

  37. Yuan, H. Z.; Wu, K.; Zhang, J. Y.; Wang, Y. Q.; Liu, G.; Sun, J. Curvature-controlled wrinkling surfaces for friction. Adv. Mater. 2019, 31, 1900933.

    Article  Google Scholar 

  38. Zhang, C.; Wang, J. W.; Cao, Y. P.; Lu, C. H.; Li, B.; Feng, X. Q. Microbead-regulated surface wrinkling patterns in a film-substrate system. Appl. Phys. Lett. 2017, 111, 151601.

    Article  Google Scholar 

  39. Paulsen, J. D.; Hohlfeld, E.; King, H.; Huang, J. S.; Qiu, Z. L.; Russell, T. P.; Menon, N.; Vella, D.; Davidovitch, B. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets. Proc. Natl. Acad. Sci. USA 2016, 113, 1144–1149.

    Article  CAS  Google Scholar 

  40. Tovkach, O.; Chen, J. B.; Ripp, M. M.; Zhang, T.; Paulsen, J. D.; Davidovitch, B. Mesoscale structure of wrinkle patterns and defect-proliferated liquid crystalline phases. Proc. Natl. Acad. Sci. USA 2020, 117, 3938–3943.

    Article  CAS  Google Scholar 

  41. Terwagne, D.; Brojan, M.; Reis, P. M. Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 2014, 26, 6608–6611.

    Article  CAS  Google Scholar 

  42. Li, B.; Jia, F.; Cao, Y. P.; Feng, X. Q.; Gao, H. J. Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 2011, 106, 234301.

    Article  Google Scholar 

  43. Chiang, H. C. F.; Chiu, L. J.; Li, H. H.; Hsiao, P. Y.; Hong, T. M. Crumpling an elastoplastic thin sphere. Phys. Rev. E 2021, 103, 012209.

    Article  Google Scholar 

  44. Stoop, N.; Lagrange, R.; Terwagne, D.; Reis, P. M.; Dunkel, J. Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 2015, 14, 337–342.

    Article  CAS  Google Scholar 

  45. Yin, J.; Yagüe, J. L.; Eggenspieler, D.; Gleason, K. K.; Boyce, M. C. Deterministic order in surface micro-topologies through sequential wrinkling. Adv. Mater. 2012, 24, 5441–5446.

    Article  CAS  Google Scholar 

  46. Javili, A.; Bakiler, A. D. A displacement-based approach to geometric instabilities of a film on a substrate. Math. Mech. Solids 2019, 24, 2999–3023.

    Article  Google Scholar 

  47. Audoly, B.; Boudaoud, A. Buckling of a stiff film bound to a compliant substrate—Part I: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 2008, 56, 2401–2421.

    Article  CAS  Google Scholar 

  48. Lin, G. J.; Li, J. Q.; Xu, Z.; Ge, D. T.; Sun, W. F.; Chen, P. W. Hierarchical surface patterns via global wrinkling on curved substrate for fluid drag control. Adv. Mater. Interfaces 2021, 8, 2001489.

    Article  CAS  Google Scholar 

  49. Chen, P. Y.; Sodhi, J.; Qiu, Y.; Valentin, T. M.; Steinberg, R. S.; Wang, Z. Y.; Hurt, R. H.; Wong, I. Y. Multiscale graphene topographies programmed by sequential mechanical deformation. Adv. Mater. 2016, 28, 3603–3603.

    Article  CAS  Google Scholar 

  50. Chen, X. M.; Li, Q.; Hou, K. Y.; Li, X. Y.; Wang, Z. K. Microflower-decorated superhydrophobic copper surface for dry condensation. Langmuir 2019, 35, 16275–16280.

    Article  CAS  Google Scholar 

  51. Feng, S. L.; Delannoy, J.; Malod, A.; Zheng, H. X.; Quéré, D.; Wang, Z. K. Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. Sci. Adv. 2020, 6, eabb4540.

    Article  Google Scholar 

  52. Yang, S. K.; Sun, N.; Stogin, B. B.; Wang, J.; Huang, Y.; Wong, T. S. Ultra-antireflective synthetic brochosomes. Nat. Commun. 2017, 8, 1285.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the technical support by the Core Facilities, State Key Laboratory of modern optical instruments, Zhejiang University. This work is financially supported by the National Natural Science Foundation of China (Nos. 52122301, 51973191, 52090030, and 51533008), Hundred Talents Program of Zhejiang University (No. 188020*194231701/113), Key Research and Development Plan of Zhejiang Province (No. 2018C01049), Shanxi-Zheda Institute of New Materials and Chemical Engineering (No. 2012SZ-FR004), and the Fundamental Research Funds for the Central Universities (Nos. K20200060, 2017QNA4036, and 2017XZZX001-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Han, Z., Wang, L. et al. Wrinkling modes of graphene oxide assembled on curved surfaces. Nano Res. 16, 1801–1809 (2023). https://doi.org/10.1007/s12274-022-4895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4895-0

Keywords

Navigation