Skip to main content
Log in

Cu1-B dual-active sites catalysts for the efficient dehydrogenative coupling and CO2 electroreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dual-active sites (DASs) catalysts have positive potential applications in broad fields because of their specific active sites and synergistic catalytic effects. Therefore, the controllable synthesis and finely regulating the activity of such catalysts has become a hot research area for now. In this work, we developed a pyrolysis-etching-hydrogen activation strategy to prepare the DASs catalysts involving single-atom Cu and B on N-doped porous carbon material (Cu1-B/NPC). Numerous systematic characterization and density functional theoretical (DFT) calculation results showed that the Cu and B existed as Cu-N4 porphyrin-like unit and B-N3 unit in the obtained catalyst. DFT calculations further revealed that single-atom Cu and B sites were linked by bridging N atoms to form the Cu1-B-N6 dual-sites. The Cu1-B/NPC catalyst was more effective than the single-active site catalysts with B-N3 sites in NPC (B/NPC) and Cu-N4 porphyrin-like sites in NPC (Cu1/NPC), respectively, for the dehydrogenative coupling of dimethylphenylsilane (DiMPSH) with various alcohols, performing the great activity (> 99%) and selectivity (> 99%). The catalytic performances of the Cu1-B/NPC catalyst remained nearly unchanged after five cycles, also indicating its outstanding recyclability. DFT calculations showed that the Cu1-B-N6 dual-sites exhibited the lowest energy profile on the potential energy surface than that of sole B-N3 and Cu-N4 porphyrin-like sites. Furthermore, the rate-limiting step of dehydrogenation of DiMPSH on Cu1-B-N6 dual-sites also showed a much lower activation energy than the other two single sites. Benefitting from the superiority of the Cu1-B-N6 dual-sites, the Cu1-B/NPC catalyst can also be used for CO2 electroreduction to produce syngas. Thus, DASs catalysts are promising to achieve multifunctional catalytic properties and have aroused positive attention in the field of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, P.; Xiong, X.; Wang, D. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  2. Wang, Y.; Wang, D.; Li, Y. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    CAS  Google Scholar 

  3. Pan, Y.; Zhang, C.; Lin, Y.; Liu, Z.; Wang, M.; Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

    CAS  Google Scholar 

  4. Yang, J.; Li, W.; Wang, D.; Li, Y. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    CAS  Google Scholar 

  5. Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    CAS  Google Scholar 

  6. Hossain, M. D.; Liu, Z.; Zhuang, M.; Yan, X.; Xu, G. -L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. -J.; Wong, H. et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater. 2019, 9, 1803689.

    Google Scholar 

  7. Jing, H.; Zhu, P.; Zheng, X.; Zhang, Z.; Wang, D.; Li, Y. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Google Scholar 

  8. Xu, Q.; Zhang, J.; Wang, D.; Li, Y. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

    CAS  Google Scholar 

  9. Peng, Y.; Lu, B.; Chen, S. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

    Google Scholar 

  10. Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 2021, 15, 210–239.

    CAS  Google Scholar 

  11. Min, Y.; Zhou, X.; Chen, J. -J.; Chen, W.; Zhou, F.; Wang, Z.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

    CAS  Google Scholar 

  12. Xiong, C.; Tian, L.; Xiao, C.; Xue, Z.; Zhou, F.; Zhou, H.; Zhao, Y.; Chen, M.; Wang, Q.; Qu, Y. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

    CAS  Google Scholar 

  13. Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  14. Kuai, L.; Chen, Z.; Liu, S.; Kan, E.; Yu, N.; Ren, Y.; Fang, C.; Li, X.; Li, Y.; Geng, B. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

    Google Scholar 

  15. Wei, S.; Li, A.; Liu, J. -C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W. -C.; Wang, Y.; Zheng, L. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    CAS  Google Scholar 

  16. Kuai, L.; Liu, S. J.; Cao, S. F.; Ren, Y. M.; Kan, E. J.; Zhao, Y. Y.; Yu, N.; Li, F.; Li, X. Y.; Wu, Z. C. et al. Atomically dispersed Pt/metal oxide mesoporous catalysts from synchronous pyrolysis deposition route for water-gas shift reaction. Chem. Mater. 2018, 30, 5534–5538.

    CAS  Google Scholar 

  17. Wang, B.; Chen, S.; Zhang, Z.; Wang, D. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat. 2022, 3, 84–110.

    CAS  Google Scholar 

  18. Yan, H.; Su, C.; He, J.; Chen, W. Single-atom catalysts and their applications in organic chemistry. J. Mater. Chem. A 2018, 6, 8793–8814.

    CAS  Google Scholar 

  19. Zheng, X.; Li, B.; Wang, Q.; Wang, D.; Li, Y. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  20. Li, R.; Wang, D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  21. Zhang, Z.; Zhou, M.; Chen, Y.; Liu, S.; Wang, H.; Zhang, J.; Ji, S.; Wang, D.; Li, Y. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    CAS  Google Scholar 

  22. Xiong, Y.; Sun, W.; Han, Y.; Xin, P.; Zheng, X.; Yan, W.; Dong, J.; Zhang, J.; Wang, D.; Li, Y. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    CAS  Google Scholar 

  23. Zhuang, J.; Wang, D. Current advances and future challenges of single-atom catalysis. Chem. J. Chin. Univ. 2022, 43, 20220043.

    Google Scholar 

  24. Tian, S.; Hu, M.; Xu, Q.; Gong, W.; Chen, W.; Yang, J.; Zhu, Y.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    CAS  Google Scholar 

  25. Zhao, J.; Ji, S.; Guo, C.; Li, H.; Dong, J.; Guo, P.; Wang, D.; Li, Y.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O-H bond insertion. Nat. Catal. 2021, 4, 523–531.

    CAS  Google Scholar 

  26. Li, F.; Han, G. -F.; Noh, H. -J.; Kim, S. -J.; Lu, Y.; Jeong, H. Y.; Fu, Z.; Baek, J. -B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

    CAS  Google Scholar 

  27. Han, G.; Zheng, Y.; Zhang, X.; Wang, Z.; Gong, Y.; Du, C.; Banis, M. N.; Yiu, Y. -M.; Sham, T. -K.; Gu, L. et al. High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 2019, 66, 104088.

    CAS  Google Scholar 

  28. Wu, H.; Li, H.; Zhao, X.; Liu, Q.; Wang, J.; Xiao, J.; Xie, S.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc—air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

    CAS  Google Scholar 

  29. Li, P.; Jin, Z.; Qian, Y.; Fang, Z.; Xiao, D.; Yu, G. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

    CAS  Google Scholar 

  30. Wang, X.; Shi, Q.; Zha, Z.; Zhu, D.; Zheng, L.; Shi, L.; Wei, X.; Lian, L.; Wu, K.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

    CAS  Google Scholar 

  31. Wu, Q.; Wang, J.; Wang, Z.; Xu, Y.; Xing, Z.; Zhang, X.; Guan, Y.; Liao, G.; Li, X. High-loaded single Cu atoms decorated on N-doped graphene for boosting Fenton-like catalysis under neutral pH. J. Mater. Chem. A 2020, 8, 13685–13693.

    CAS  Google Scholar 

  32. Lin, Z.; Zheng, L.; Yao, W.; Liu, S.; Bu, Y.; Zeng, Q.; Zhang, X.; Deng, H.; Lin, X.; Chen, W. A facile route for constructing Cu-N-C peroxidase mimics. J. Mater. Chem. B 2020, 8, 8599–8606.

    CAS  Google Scholar 

  33. Chen, A.; Yu, X.; Zhou, Y.; Miao, S.; Li, Y.; Kuld, S.; Sehested, J.; Liu, J.; Aoki, T.; Hong, S. et al. Structure of the catalytically active copper—ceria interfacial perimeter. Nat. Catal. 2019, 2, 334–341.

    CAS  Google Scholar 

  34. Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Xie, J.; Xiao, D.; Wen, X.; Wang, N. et al. Anchoring Cu1 species over nanodiamondgraphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

    Google Scholar 

  35. Chen, S.; Li, W. -H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  36. Wang, J.; Hei, T.; Zhu, B.; Tung, C. -W.; Yu, J.; Chen, H. M.; Antonietti, M.; Cao, S. A single Cu-center containing enzyme-mimic enabling full photosynthesis under CO2 reduction. ACS Nano 2020, 14, 8584–8593.

    CAS  Google Scholar 

  37. Long, R.; Li, Y.; Liu, Y.; Chen, S.; Zheng, X.; Gao, C.; He, C.; Chen, N.; Qi, Z.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

    CAS  Google Scholar 

  38. Jiao, J.; Lin, R.; Liu, S.; Cheong, W. -C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S. -F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    CAS  Google Scholar 

  39. Wang, Y.; Chen, Z.; Han, P.; Du, Y.; Gu, Z.; Xu, X.; Zheng, G. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

    CAS  Google Scholar 

  40. Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. -Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.

    CAS  Google Scholar 

  41. Jia, L.; Yan, C.; Zhu, P.; Ma, C.; Wu, W.; Wei, C.; Shen, Y.; Chu, S.; Wang, J.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 251, 87–93.

    Google Scholar 

  42. Zhang, T.; Zhang, D.; Han, X.; Dong, T.; Guo, X.; Song, C.; Si, R.; Liu, W.; Liu, Y.; Zhao, Z. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    CAS  Google Scholar 

  43. Zhang, J.; Wang, Z.; Chen, W.; Xiong, Y.; Cheong, W. -C.; Zheng, L.; Yan, W.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

    CAS  Google Scholar 

  44. Xu, Q.; Guo, C.; Li, B.; Zhang, Z.; Qiu, Y.; Tian, S.; Zheng, L.; Gu, L.; Yan, W.; Wang, D. et al. Al3+ dopants induced Mg2+ vacancies stabilizing single-atom Cu catalyst for efficient free-radical hydrophosphinylation of alkenes. J. Am. Chem. Soc. 2022, 144, 4321–4326.

    CAS  Google Scholar 

  45. Xiong, Y.; Wang, S.; Chen, W.; Zhang, J.; Li, Q.; Hu, H. -S.; Zheng, L.; Yan, W.; Gu, L.; Wang, D. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

    CAS  Google Scholar 

  46. Wang, M.; Zheng, X.; Qin, D.; Li, M.; Sun, K.; Liu, C.; Cheong, W. -C.; Liu, Z.; Chen, Y.; Liu, S. et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 2022, 18, 2201974.

    CAS  Google Scholar 

  47. Li, J. -C.; Zhong, H.; Xu, M.; Li, T.; Wang, L.; Shi, Q.; Feng, S.; Lyu, Z.; Liu, D.; Du, D. et al. Boosting the activity of Fe-Nx moieties in Fe-N-C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

    CAS  Google Scholar 

  48. Pan, Y.; Chen, Y.; Wu, K.; Chen, Z.; Liu, S.; Cao, X.; Cheong, W. -C.; Meng, T.; Luo, J.; Zheng, L. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Google Scholar 

  49. Luo, F.; Zhu, J.; Ma, S.; Li, M.; Xu, R.; Zhang, Q.; Yang, Z.; Qu, K.; Cai, W.; Chen, Z. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater. 2021, 35, 723–730.

    Google Scholar 

  50. Wan, J.; Zhao, Z.; Shang, H.; Peng, B.; Chen, W.; Pei, J.; Zheng, L.; Dong, J.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal—organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    CAS  Google Scholar 

  51. Hou, Y.; Qiu, M.; Kim, G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X.; Yang, B.; Cho, J.; Chen, M. et al. Atomically dispersed nickel-nitrogen—sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Google Scholar 

  52. Chen, Y.; Gao, R.; Ji, S.; Li, H.; Tang, K.; Jiang, P.; Hu, H.; Zhang, Z.; Hao, H.; Qu, Q. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal—organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    CAS  Google Scholar 

  53. Zhang, N.; Zhang, X.; Kang, Y.; Ye, C.; Jin, R.; Yan, H.; Lin, R.; Yang, J.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

    CAS  Google Scholar 

  54. Zhang, J.; Huang, Q.; Wang, J.; Wang, J.; Zhang, J.; Zhao, Y. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

    CAS  Google Scholar 

  55. Cui, T.; Wang, Y. -P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  56. Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C. et al. Atomically dispersed iron—nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    CAS  Google Scholar 

  57. Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y.; Yan, X.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

    CAS  Google Scholar 

  58. Shang, S.; Chen, P. -P.; Wang, L.; Lv, Y.; Li, W. -X.; Gao, S. Metalfree nitrogen- and boron-codoped mesoporous carbons for primary amides synthesis from primary alcohols via direct oxidative dehydrogenation. ACS Catal. 2018, 8, 9936–9944.

    CAS  Google Scholar 

  59. Schiros, T.; Nordlund, D.; Palova, L.; Zhao, L.; Levendorf, M.; Jaye, C.; Reichman, D. J.; Park, M.; Hybertsen, A.; Pasupathy. Atomistic interrogation of B—N Co-dopant structures and their electronic effects in graphene. ACS Nano 2016, 10, 6574–6584.

    CAS  Google Scholar 

  60. Wu, T.; Li, S.; Liu, S.; Cheong, W. -C.; Peng, C.; Yao, K.; Li, Y.; Wang, J.; Jiang, B.; Chen, Z. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 2022, 15, 3980–3990.

    CAS  Google Scholar 

  61. Briihwiler, P. A.; Maxwell, A. J.; Puglia, C.; Nilsson, A.; Andersson, S.; Mårtensson, N. π⋆ and σ⋆ excitons in C 1s absorption of graphite. Phys. Rev. Lett. 1995, 74, 614–617.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51902003, 22002085, 21771003, 21501004), the University Synergy Innovation Program of Anhui Province (No. GXXT-2021-020), the Anhui Province Natural Science Foundation (Nos. 2108085QB71 and 2008085QB53), the Natural Science Research Project of Anhui Province Education Department (No. KJ2019A0581), the Open Project of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling of Ministry of Education (No. JKF21-03), the Open Foundation of Anhui Laboratory of Clean Catalytic Engineering (No. LCCE-01), and the Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry (STKF2109). We acknowledge the 1W1B beamline station of Beijing Synchrotron Radiation Facility (BSRF), the Institute of Physics of Chinese Academy of Sciences, and the National Synchrotron Radiation Laboratory (NSRL) of Hefei. We also thank Prof. L. R. Zheng, Prof. W. S. Yan, and Prof. Q. H. Zhang for their help in catalyst characterizations. Thanks to Prof. C. Chen and Dr. W. -C. Cheong of Tsinghua University for their help in materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shoujie Liu, Sha Li or Jian Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Fang, Z., Peng, C. et al. Cu1-B dual-active sites catalysts for the efficient dehydrogenative coupling and CO2 electroreduction. Nano Res. 16, 4582–4588 (2023). https://doi.org/10.1007/s12274-022-4862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4862-9

Keywords

Navigation