Skip to main content

Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation

Abstract

The development of electrocatalysts toward the hydrogen evolution reaction (HER) with high-current-density capability is critical for the practical application of water splitting for hydrogen production. While Pt-based materials are regarded as the most efficient HER catalysts, they suffer from scarcity and high price. Thus, it is of vital importance to lower the loading of Pt while maintaining high activity. Here, we report the fabrication of a monolithic aligned porous carbon film electrode co-modified with Pt single atoms and Pt nanoclusters (Pt SA/NC-AF) containing ultralow Pt content (0.038 wt.%) via a facile electrochemical deposition process. Benefiting from the aligned porous structure of the carbon film and the high exposure of the Pt species, the optimized Pt SA/NC-AF electrode exhibits outstanding HER performance in 0.5 M H2SO4 with exceptional intrinsic activity (turnover frequency (TOF) = 904.9 s−1 at η = 100 mV) and ultrahigh mass activity (888.6 A·mgPt−1 at · = 100 mV). Further, it can deliver an industrially relevant current density of 1,000 mA·cm−2 at an overpotential as low as 139 mV. This work provides a feasible avenue for the rational design of metal single-atom and nanocluster catalysts and additionally promotes the application of ultralow-loading noble metal-based catalysts in high-rate hydrogen production.

This is a preview of subscription content, access via your institution.

References

  1. Xu, Y. L.; Wang, C.; Huang, Y. H.; Fu, J. Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 2021, 80, 105545.

    CAS  Article  Google Scholar 

  2. Yang, Q.; Li, G. W.; Manna, K.; Fan, F. R.; Felser, C.; Sun, Y. Topological engineering of Pt-group-metal-based chiral crystals toward high-efficiency hydrogen evolution catalysts. Adv. Mater. 2020, 32, 1908518.

    CAS  Article  Google Scholar 

  3. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  4. Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

    CAS  Article  Google Scholar 

  5. Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

    CAS  Article  Google Scholar 

  6. Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S. Y.; Zou, X. L.; Ding, B. F. et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051.

    CAS  Article  Google Scholar 

  7. Nie, N. Z.; Zhang, D.; Wang, Z. C.; Qin, Y. N.; Zhai, X. J.; Yang, B.; Lai, J. P.; Wang, L. Superfast synthesis of densely packed and ultrafine Pt-lanthanide@KB via solvent-free microwave as efficient hydrogen evolution electrocatalysts. Small 2021, 17, 2102879.

    CAS  Article  Google Scholar 

  8. Zhang, C. X.; Cui, Y. N.; Yang, Y. L.; Lu, L. G.; Yu, S. S.; Meng, Z. S.; Wu, Y. X.; Li, Y. X.; Wang, Y. A.; Tian, H. W. et al. Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH-universal hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2105372.

    CAS  Article  Google Scholar 

  9. Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

    CAS  Article  Google Scholar 

  10. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    CAS  Article  Google Scholar 

  11. Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

    Article  Google Scholar 

  12. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Article  Google Scholar 

  13. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.

  14. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res., in press, https://doi.org/10.1007/s12274-022-4371-x.

  15. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    CAS  Article  Google Scholar 

  16. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202200366.

    Google Scholar 

  17. Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

    CAS  Article  Google Scholar 

  18. Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

    CAS  Article  Google Scholar 

  19. Nie, Z. F.; Zhang, L. L.; Ding, X.; Cong, M. Y.; Xu, F. F.; Ma, L. H.; Guo, M. X.; Li, M. Z.; Zhang, L. X. Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru-nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru Atoms. Adv. Mater. 2022, 34, 2108180.

    CAS  Article  Google Scholar 

  20. Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

    CAS  Article  Google Scholar 

  21. Hu, Q.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 2019, 7, 19531–19538.

    CAS  Article  Google Scholar 

  22. Luo, W. H.; Wang, Y.; Luo, L. X.; Gong, S.; Wei, M. N.; Li, Y. X.; Gan, X. P.; Zhao, Y. Y.; Zhu, Z. H.; Li, Z. Single-atom and bimetallic nanoalloy supported on nanotubes as a bifunctional electrocatalyst for ultrahigh-current-density overall water splitting. ACS Catal. 2022, 12, 1167–1179.

    CAS  Article  Google Scholar 

  23. Ji, J. P.; Zhang, Y. P.; Tang, L. B.; Liu, C. Y.; Gao, X. H.; Sun, M. H.; Zheng, J. C.; Ling, M.; Liang, C. D.; Lin, Z. Platinum single-atom and cluster anchored on functionalized MWCNTs with ultrahigh mass efficiency for electrocatalytic hydrogen evolution. Nano Energy 2019, 63, 103849.

    CAS  Article  Google Scholar 

  24. Lei, C. J.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X. D.; Chen, M. W.; Yang, B.; Lei, L. C. et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy Environ. Sci. 2019, 12, 149–156.

    CAS  Article  Google Scholar 

  25. Ramesh, R.; Han, S.; Nandi, D. K.; Sawant, S. Y.; Kim, D. H.; Cheon, T.; Cho, M. H.; Harada, R.; Shigetomi, T.; Suzuki, K. et al. Ultralow loading (single-atom and clusters) of the Pt catalyst by atomic layer deposition using dimethyl ((3, 4-η) N, N -dimethyl-3-butene-1-amine-N) platinum (DDAP) on the high-surface-area substrate for hydrogen evolution reaction. Adv. Mater. Interfaces 2021, 8, 2001508.

    CAS  Article  Google Scholar 

  26. Cheng, Q. Q.; Hu, C. G.; Wang, G. L.; Zou, Z. Q.; Yang, H.; Dai, L. M. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 5594–5601.

    CAS  Article  Google Scholar 

  27. Li, L.; Zhang, G. W.; Wang, B.; Yang, T.; Yang, S. C. Electrochemical formation of PtRu bimetallic nanoparticles for highly efficient and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 2090–2098.

    CAS  Article  Google Scholar 

  28. Wang, Z. Y.; Yang, J.; Gan, J.; Chen, W. X.; Zhou, F. Y.; Zhou, X.; Yu, Z. Q.; Zhu, J. F.; Duan, X. Z.; Wu, Y. E. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 4, 10755–10760.

    Article  Google Scholar 

  29. Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. N.; Luo, W. B. et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021, 84, 105898.

    CAS  Article  Google Scholar 

  30. Nairan, A.; Liang, C. W.; Chiang, S. W.; Wu, Y.; Zou, P. C.; Khan, U.; Liu, W. D.; Kang, F. Y.; Guo, S. J.; Wu, J. B. et al. Proton selective adsorption on Pt-Ni nano-thorn array electrodes for superior hydrogen evolution activity. Energy Environ. Sci. 2021, 14, 1594–1601.

    CAS  Article  Google Scholar 

  31. Liu, L.; Wang, Y.; Zhao, Y. Z.; Wang, Y.; Zhang, Z. L.; Wu, T.; Qin, W. J.; Liu, S. J.; Jia, B. R.; Wu, H. Y. et al. Ultrahigh Pt-mass-activity hydrogen evolution catalyst electrodeposited from bulk Pt. Adv. Funct. Mater. 2022, 32, 2112207.

    CAS  Article  Google Scholar 

  32. Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

    CAS  Article  Google Scholar 

  33. Guo, M. R.; Qayum, A.; Dong, S.; Jiao, X. L.; Chen, D. R.; Wang, T. In situ conversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni3S2, Co9S8 or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 9239–9247.

    CAS  Article  Google Scholar 

  34. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

    CAS  Article  Google Scholar 

  35. Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.

    CAS  Article  Google Scholar 

  36. Shan, X. Y.; Liu, J.; Mu, H. R.; Xiao, Y.; Mei, B. B.; Liu, W. G.; Lin, G.; Jiang, Z.; Wen, L. P.; Jiang, L. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 1659–1665.

    CAS  Article  Google Scholar 

  37. Luo, Y. T.; Zhang, Z. Y.; Yang, F. N.; Li, J.; Liu, Z. B.; Ren, W. C.; Zhang, S.; Liu, B. L. Stabilized hydroxide-mediated nickel-based electrocatalysts for high-current-density hydrogen evolution in alkaline media. Energy Environ. Sci. 2021, 14, 4610–4619.

    CAS  Article  Google Scholar 

  38. Wu, D. L.; Chen, D.; Zhu, J. W.; Mu, S. C. Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.

    CAS  Article  Google Scholar 

  39. Liu, R.; Gong, Z. C.; Liu, J. B.; Dong, J. C.; Liao, J. W.; Liu, H.; Huang, H. K.; Liu, J. J.; Yan, M. M.; Huang, K. et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv. Mater. 2021, 33, 2103533.

    CAS  Article  Google Scholar 

  40. Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F. et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

    Article  CAS  Google Scholar 

  41. Peng, Y. W.; Shan, C. S.; Wang, H. J.; Hong, L. Y.; Yao, S.; Wu, R. J.; Zhang, Z. M.; Lu, T. B. Polyoxometalate-derived ultrasmall Pt2W/WO3 heterostructure outperforms platinum for large-current-density H2 evolution. Adv. Energy Mater. 2019, 9, 1900597.

    Article  CAS  Google Scholar 

  42. Zhang, Z. R.; Feng, C.; Liu, C. X.; Zuo, M.; Qin, L.; Yan, X. P.; Xing, Y. L.; Li, H. L.; Si, R.; Zhou, S. M. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.

    CAS  Article  Google Scholar 

  43. Kuang, Y. D.; Chen, C. J.; Kirsch, D.; Hu, L. B. Thick electrode batteries: Principles, opportunities, and challenges. Adv. Energy Mater. 2019, 9, 1901457.

    Article  CAS  Google Scholar 

  44. Zhao, S.; Zhang, H. B.; Luo, J. Q.; Wang, Q. W.; Xu, B.; Hong, S.; Yu, Z. Z. Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 2018, 12, 11193–11202.

    CAS  Article  Google Scholar 

  45. Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Gang, Y.; Xiang, X. M.; Du, Z. C.; Zhang, P.; Wang, G. F.; Nguyen, H. T. et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 2020, 14, 5506–5516.

    CAS  Article  Google Scholar 

  46. Dimiev, A. M.; Khannanov, A.; Vakhitov, I.; Kiiamov, A.; Shukhina, K.; Tour, J. M. Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons. ACS Nano 2018, 12, 3985–3993.

    CAS  Article  Google Scholar 

  47. Xia, W.; Tang, J.; Li, J. J.; Zhang, S. H.; Wu, K. C. W.; He, J. P.; Yamauchi, Y. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angee. Chem., Int. Ed. 2019, 58, 13354–13359.

    CAS  Article  Google Scholar 

  48. He, Q.; Zhou, Y. Z.; Shou, H. W.; Wang, X. Y.; Zhang, P. J.; Xu, W. J.; Qiao, S. C.; Wu, C. Q.; Liu, H. J.; Liu, D. B. et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, 2110604.

    CAS  Article  Google Scholar 

  49. Li, K.; Li, Y.; Wang, Y. M.; Ge, J. J.; Liu, C. P.; Xing, W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy Environ. Sci. 2018, 11, 1232–1239.

    CAS  Article  Google Scholar 

  50. Zhang, D.; Wang, Z. C.; Wu, X. K.; Shi, Y.; Nie, N. Z.; Zhao, H.; Miao, H. F.; Chen, X. L.; Li, S. X.; Lai, J. P. et al. Noble metal (Pt, Rh, Pd, Ir) doped Ru/CNT ultra-small alloy for acidic hydrogen evolution at high current density. Small 2022, 18, 2104559.

    CAS  Article  Google Scholar 

  51. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. F. acknowledges financial support from the National Natural Science Foundation of China (Nos. 51902099 and 92163116), Functamental Research Functs for the Central Universities (No. 531119200087), and the Innovative Research Groups of Hunan Province (No. 2020JJ1001). G. Y. acknowledges support from the Hunan Province Natural Science Foundation (No. 2020JJ4204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gonglan Ye or Huilong Fei.

Electronic supplementary material

12274_2022_4749_MOESM1_ESM.pdf

Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Gong, Z., Yan, M. et al. Aligned porous carbon film with ultralow loadings of Pt single atoms and clusters for high-current-density hydrogen generation. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4749-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-022-4749-9

Keywords

  • monolithic electrodes
  • single atoms
  • clusters
  • hydrogen evolution reaction
  • high current density