Skip to main content
Log in

Deciphering the role of monosaccharides during phage infection of Staphylococcus aureus

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As phages are extensively investigated as novel therapy tools but also as transfer agents for antibiotic resistance genes, thorough understanding of phage—host interactions becomes crucial. Prerequisite for phage infection is its adhesion to the host surface. Herein, we used atomic force microscopy-based single-particle force spectroscopy with phage-decorated tips to decipher the adhesion of phage 187 on living Staphylococcus aureus cells. We found that addition of free N-acetyl-D-glucosamine was able to decrease phage adhesion, suggesting that this monosaccharide plays major role in phage 187 infection of S. aureus. Moreover, phage 187 adhesion on monosaccharide-coated model surfaces combined with plaque forming unit counts suggested that a direct link can be established between the propensity to bind to a saccharide and the capability of the latter to inhibit phage infection. On a nanoscale level, single-particle force spectroscopy was successfully used to identify a major receptor required for phage 187 infection of S. aureus but also evidenced that this receptor was responsible for phage adhesion on host-cells. Our work demonstrates that single-particle force spectroscopy is a powerful platform to screen and predict the molecular target of phages on their host surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clokie, M. R. J.; Millard, A. D.; Letarov, A. V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45.

    Article  Google Scholar 

  2. Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017, 9, 50.

    Article  Google Scholar 

  3. Dowah, A. S. A.; Clokie, M. R. J. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys. Rev. 2018, 10, 535–542.

    Article  CAS  Google Scholar 

  4. Winstel, V.; Liang, C. G.; Sanchez-Carballo, P.; Steglich, M.; Munar, M.; Bröker, B. M.; Penadés, J. R.; Nübel, U.; Holst, O.; Dandekar, T. et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat. Commun. 2013, 4, 2345.

    Article  Google Scholar 

  5. Chan, B. K.; Abedon, S. T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783.

    Article  CAS  Google Scholar 

  6. Moelling, K.; Broecker, F.; Willy, C. A wake-up call: We need phage therapy now. Viruses 2018, 10, 688.

    Article  CAS  Google Scholar 

  7. Azam, A. H.; Tanji, Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl. Microbiol. Biotechnol. 2019, 103, 4279–1289.

    Article  CAS  Google Scholar 

  8. Sulakvelidze, A.; Alavidze, Z.; Morris, J. G. Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659.

    Article  CAS  Google Scholar 

  9. Jamal, M.; Bukhari, S. M. A. U. S.; Andleeb, S.; Ali, M.; Raza, S.; Nawaz, M. A.; Hussain, T.; Rahman, S. U.; Shah, S. S. A. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 2019, 59, 123–133.

    Article  Google Scholar 

  10. Sarhan, W. A.; Azzazy, H. M. Phage approved in food, why not as a therapeutic. Expert Rev. Anti-Infect. Ther. 2015, 13, 91–101.

    Article  CAS  Google Scholar 

  11. Zbikowska, K.; Michalczuk, M.; Dolka, B. The use of bacteriophages in the poultry industry. Animals 2020, 10, 872.

    Article  Google Scholar 

  12. Withey, S.; Cartmell, E.; Avery, L. M.; Stephenson, T. Bacteriophages—Potential for application in wastewater treatment processes. Sci. Total Environ. 2005, 339, 1–18.

    Article  CAS  Google Scholar 

  13. Periasamy, D.; Sundaram, A. A novel approach for pathogen reduction in wastewater treatment. J. Environ. Health Sci. Eng. 2013, 11, 12.

    Article  Google Scholar 

  14. Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002.

    Article  Google Scholar 

  15. Stone, E.; Campbell, K.; Grant, I.; McAuliffe, O. Understanding and exploiting phage-host interactions. Viruses 2019, 11, 567.

    Article  CAS  Google Scholar 

  16. Rakhuba, D. V.; Kolomiets, E. I.; Dey, E. S.; Novik, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 2010, 59, 145–155.

    Article  CAS  Google Scholar 

  17. Bielmann, R.; Habann, M.; Eugster, M. R.; Lurz, R.; Calendar, R.; Klumpp, J.; Loessner, M. J. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 2015, 477, 110–118.

    Article  CAS  Google Scholar 

  18. Ackermann, H. W. Bacteriophage observations and evolution. Res. Microbiol. 2003, 154, 245–251.

    Article  CAS  Google Scholar 

  19. Dubrovin, E. V.; Voloshin, A. G.; Kraevsky, S. V.; Ignatyuk, T. E.; Abramchuk, S. S.; Yaminsky, I. V.; Ignatov, S. G. Atomic force microscopy investigation of phage infection of bacteria. Langmuir 2008, 24, 13068–13074.

    Article  CAS  Google Scholar 

  20. Zago, M.; Scaltriti, E.; Fornasari, M. E.; Rivetti, C.; Grolli, S.; Giraffa, G.; Ramoni, R.; Carminati, D. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus. J. Microbiol. Methods 2012, 88, 41–46.

    Article  Google Scholar 

  21. Alsteens, D.; Trabelsi, H.; Soumillion, P.; Dufrêne, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 2013, 4, 2926.

    Article  Google Scholar 

  22. Müller, D. J.; Dufrêne, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 2008, 3, 261–269.

    Article  Google Scholar 

  23. Helenius, J.; Heisenberg, C. P.; Gaub, H. E.; Muller, D. J. Single-cell force spectroscopy. J. Cell Sci. 2008, 121, 1785–1791.

    Article  CAS  Google Scholar 

  24. El-Kirat-Chatel, S.; Beaussart, A. Probing bacterial adhesion at the single-molecule and single-cell levels by AFM-based force spectroscopy. In Nanoscale Imaging: Methods and Protocols; Lyubchenko, Y. L., Ed.; Springer: New York, 2018; pp 403–414.

    Chapter  Google Scholar 

  25. Beaussart, A.; Feuillie, C.; El-Kirat-Chatel, S. The microbial adhesive arsenal deciphered by atomic force microscopy. Nanoscale 2020, 12, 23885–23896.

    Article  CAS  Google Scholar 

  26. Beaussart, A.; El-Kirat-Chatel, S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf. 2019, 5, 100031.

    Article  CAS  Google Scholar 

  27. Koehler, M.; Aravamudhan, P.; Guzman-Cardozo, C.; Dumitru, A. C.; Yang, J.; Gargiulo, S.; Soumillion, P.; Dermody, T. S.; Alsteens, D. Glycan-mediated enhancement of reovirus receptor binding. Nat. Commun. 2019, 10, 4460.

    Article  Google Scholar 

  28. Liu, S. Y.; Wang, Y. F. Application of AFM in microbiology: A review. Scanning 2010, 32, 61–73.

    Article  CAS  Google Scholar 

  29. Dubrovin, E. V.; Popova, A. V.; Kraevskiy, S. V.; Ignatov, S. G.; Ignatyuk, T. E.; Yaminsky, I. V.; Volozhantsev, N. V. Atomic force microscopy analysis of the Acinetobacter baumannii Bacteriophage AP22 lytic cycle. PLoS ONE 2012, 7, e47348.

    Article  CAS  Google Scholar 

  30. Deghorain, M.; Van Melderen, L. The Staphylococci phages family: An overview. Viruses 2012, 4, 3316–3335.

    Article  Google Scholar 

  31. Wertheim, H. F.; Melles, D. C.; Vos, M. C.; Van Leeuwen, W.; Van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762.

    Article  Google Scholar 

  32. Ford, C. A.; Hurford, I. M.; Cassat, J. E. Antivirulence strategies for the treatment of Staphylococcus aureus infections: A mini review. Front. Microbiol. 2021, 11, 3568.

    Article  Google Scholar 

  33. Lindsay, J. A.; Holden, M. T. G. Understanding the rise of the superbug: Investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 2006, 6, 186–201.

    Article  CAS  Google Scholar 

  34. Seo, H. S.; Cartee, R. T.; Pritchard, D. G.; Nahm, M. H. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J. Bacteriol. 2008, 190, 2379–2387.

    Article  CAS  Google Scholar 

  35. Brown, S.; Santa Maria, J. P., Jr.; Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 2013, 67, 313–336.

    Article  CAS  Google Scholar 

  36. Hughes, A. H.; Hancock, I. C.; Baddiley, J. The function of teichoic acids in cation control in bacterial membranes. Biochem. J. 1973, 132, 83–93.

    Article  CAS  Google Scholar 

  37. Lambert, P. A.; Hancock, I. C.; Baddiley, J. Occurrence and function of membrane teichoic acids. Biochim. Biophys. Acta 1977, 472, 1–12.

    Article  CAS  Google Scholar 

  38. van Wely, K. H.; Swaving, J.; Freudl, R.; Driessen, A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 2001, 25, 437–454.

    Article  CAS  Google Scholar 

  39. Xia, G. Q.; Maier, L.; Sanchez-Carballo, P.; Li, M.; Otto, M.; Holst, O.; Peschel, A. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J. Biol. Chem. 2010, 285, 13405–13415.

    Article  CAS  Google Scholar 

  40. Mnich, M. E.; Van Dalen, R.; Gerlach, D.; Hendriks, A.; Xia, G. Q.; Peschel, A.; Van Strijp, J. A. G.; Van Sorge, N. M. The C-type lectin receptor MGL senses N-acetylgalactosamine on the unique Staphylococcus aureus ST395 wall teichoic acid. Cell. Microbiol. 2019, 21, e13072.

    Article  Google Scholar 

  41. Winstel, V.; Sanchez-Carballo, P.; Holst, O.; Xia, G. Q.; Peschel, A. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. mBio 2014, 5, e00869.

    Article  Google Scholar 

  42. Bacharouche, J.; Erdemli, O.; Rivet, R.; Doucouré, B.; Caillet, C.; Mutschler, A.; Lavalle, P.; Duval, J. F. L.; Gantzer, C.; Francius, G. On the infectivity of bacteriophages in polyelectrolyte multilayer films: Inhibition or preservation of their bacteriolytic activity. ACS Appl. Mater. Interfaces 2018, 10, 33545–33555.

    Article  CAS  Google Scholar 

  43. Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

    Article  CAS  Google Scholar 

  44. You, L. C.; Yin, J. Amplification and spread of viruses in a growing plaque. J. Theor. Biol. 1999, 200, 365–373.

    Article  CAS  Google Scholar 

  45. Gallet, R.; Kannoly, S.; Wang, I. N. Effects of bacteriophage traits on plaque formation. BMC Microbiol. 2011, 11, 181.

    Article  Google Scholar 

  46. Bradley, D. E.; Kay, D. The fine structure of bacteriophages. J. Gen. Microbiol. 1960, 23, 553–563.

    Article  Google Scholar 

  47. Kuznetsov, Y. G.; Chang, S. C.; McPherson, A. Investigation of bacteriophage T4 by atomic force microscopy. Bacteriophage 2011, 1, 165–173.

    Article  Google Scholar 

  48. Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. How strong is a covalent bond. Science 1999, 283, 1727–1730.

    Article  CAS  Google Scholar 

  49. Herman, P.; El-Kirat-Chatel, S.; Beaussart, A.; Geoghegan, J. A.; Foster, T. J.; Dufrêne, Y. F. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol. Microbiol. 2014, 93, 356–368.

    Article  CAS  Google Scholar 

  50. Komatsuzawa, H.; Fujiwara, T.; Nishi, H.; Yamada, S.; Ohara, M.; McCallum, N.; Berger-Bächi, B.; Sugai, M. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol. Microbiol. 2004, 53, 1221–1231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Félix d’Hérelle Reference Center for Bacterial Viruses from the Université Laval (Canada) for providing the phage and the host strain. This work was supported by the Agence Nationale de la Recherche (No. ANR-20-CE06-0001), the Zone Atelier Moselle (ZAM), and the Lorraine Université d’Excellence (No. ANR-15-IDEX-04-LUE). We would also like to thank Chloé Retourney and Julie Challant for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofiane El-Kirat-Chatel.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbez, B., Gardette, M., Gantzer, C. et al. Deciphering the role of monosaccharides during phage infection of Staphylococcus aureus. Nano Res. 15, 9234–9242 (2022). https://doi.org/10.1007/s12274-022-4600-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4600-3

Keywords

Navigation