Skip to main content
Log in

Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vertically stacked transition metal dichalcogenide (TMD) heterostructures provide an opportunity to explore optoelectronic properties within the two-dimensional limit. In such structures, spatially indirect interlayer excitons (IXs) can be generated in adjacent layers because of strong Coulomb interactions. However, due to the complexity of the multilayered heterostructure (HS), the capture and study of the IXs in trilayer type-II HSs have so far remained elusive. Here, we present the observation of the IXs in trilayer type-II staggered band alignment of MoS2/MoSe2/WSe2 van der Waals (vdW) HSs by photoluminescence (PL) spectroscopy. The central energy of IX is 1.33 eV, and the energy difference between the extracted double peaks is 23 meV. We confirmed the origin of IX through PL properties and calculations by the density functional theory, we also studied the dependence of the IX emission peak on laser power and temperature. Furthermore, the polarization-resolved PL spectra of HS were also investigated, and the maximum polarizability of the emission peak of WSe2 reached 11.40% at 6 K. Our findings offer opportunities for the study of new physical properties of excitons in TMD HSs and therefore are valuable for exploring the potential applications of TMDs in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    Article  CAS  Google Scholar 

  2. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  3. Li, J. X.; Li, W. Q.; Hung, S. H.; Chen, P. L.; Yang, Y. C.; Chang, T. Y.; Chiu, P. W.; Jeng, H. T.; Liu, C. H. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-022-01115-2.

  4. Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

    Article  CAS  Google Scholar 

  5. Rasmita, A.; Gao, W. B. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Res. 2021, 14, 1901–1911.

    Article  CAS  Google Scholar 

  6. Zhu, X. D.; He, J. B.; Zhang, R. J.; Cong, C. X.; Zheng, Y. X.; Zhang, H.; Wang, S. Y.; Zhao, H. B.; Zhu, M. P.; Zhang, S. W. et al. Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Res. 2022, 15, 2674–2681.

    Article  CAS  Google Scholar 

  7. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  8. Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 2017, 17, 6360–6365.

    Article  CAS  Google Scholar 

  9. Jin, C. H.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994–1003.

    Article  CAS  Google Scholar 

  10. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  CAS  Google Scholar 

  11. Lu, N.; Guo, H. Y.; Wang, L.; Wu, X. J.; Zeng, X. C. Van der Waals trilayers and superlattices: Modification of electronic structures of MoS2 by intercalation. Nanoscale 2014, 6, 4566–4571.

    Article  CAS  Google Scholar 

  12. Zhu, Z. Y.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Phys. Rev. B 2020, 101, 224107.

    Article  CAS  Google Scholar 

  13. Choi, C.; Huang, J. H.; Cheng, H. C.; Kim, H.; Vinod, A. K.; Bae, S. H.; Özçelik, V. O.; Grassi, R.; Chae, J.; Huang, S. W. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2018, 2, 30.

    Article  Google Scholar 

  14. Hao, S. C.; He, D. W.; Miao, Q.; Han, X. X.; Liu, S. Y.; Wang, Y. S.; Zhao, H. Upconversion photoluminescence by charge transfer in a van der Waals trilayer. Appl. Phys. Lett. 2019, 115, 173102.

    Article  Google Scholar 

  15. Ji, J.; Delehey, C. M.; Houpt, D. N.; Heighway, M. K.; Lee, T.; Choi, J. H. Selective chemical modulation of interlayer excitons in atomically thin heterostructures. Nano Lett. 2020, 20, 2500–2506.

    Article  CAS  Google Scholar 

  16. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  17. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    Article  CAS  Google Scholar 

  18. Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80–84.

    Article  CAS  Google Scholar 

  19. Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

    Article  CAS  Google Scholar 

  20. Wang, Z. F.; Chiu, Y. H.; Honz, K.; Mak, K. F.; Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 2018, 18, 137–143.

    Article  CAS  Google Scholar 

  21. Deilmann, T.; Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 2018, 18, 1460–1465.

    Article  CAS  Google Scholar 

  22. Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

    Article  CAS  Google Scholar 

  23. Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, I. I.; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. Acs Nano 2018, 12, 4719–4726.

    Article  CAS  Google Scholar 

  24. Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

    Article  CAS  Google Scholar 

  25. Wang, H.; Wei, W.; Li, F. P.; Huang, B. B.; Dai, Y. Step-like band alignment and stacking-dependent band splitting in trilayer TMD heterostructures. Phys. Chem. Chem. Phys. 2018, 20, 25000–25008.

    Article  CAS  Google Scholar 

  26. Choi, W.; Akhtar, I.; Kang, D.; Lee, Y. J.; Jung, J.; Kim, Y. H.; Lee, C. H.; Hwang, D. J.; Seo, Y. Optoelectronics of multijunction heterostructures of transition metal dichalcogenides. Nano Lett. 2020, 20, 1934–1943.

    Article  CAS  Google Scholar 

  27. Ceballos, F.; Ju, M. G.; Lane, S. D.; Zeng, X. C.; Zhao, H. Highly efficient and anomalous charge transfer in van der Waals trilayer semiconductors. Nano Lett. 2017, 17, 1623–1628.

    Article  CAS  Google Scholar 

  28. Hu, X.; Wu, J. H.; Wu, M. Z.; Hu, J. Q. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 2022, 15, 805–817.

    Article  CAS  Google Scholar 

  29. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  30. Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

    Article  CAS  Google Scholar 

  31. Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.

    Article  CAS  Google Scholar 

  32. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    Article  CAS  Google Scholar 

  33. Kioseoglou, G.; Hanbicki, A. T.; Currie, M.; Friedman, A. L.; Gunlycke, D.; Jonker, B. T. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 2012, 101, 221907.

    Article  Google Scholar 

  34. Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

    Article  Google Scholar 

  35. Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

    Article  CAS  Google Scholar 

  36. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    Article  CAS  Google Scholar 

  37. Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diam. Relat. Mater. 2017, 74, 119–124.

    Article  CAS  Google Scholar 

  38. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  39. Paur, M.; Molina-Mendoza, A. J.; Bratschitsch, R.; Watanabe, K.; Taniguchi, T.; Mueller, T. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 2019, 10, 1709.

    Article  Google Scholar 

  40. Barbone, M.; Montblanch, A. R. P.; Kara, D. M.; Palacios-Berraquero, C.; Cadore, A. R.; De Fazio, D.; Pingault, B.; Mostaani, E.; Li, H.; Chen, B. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 2018, 9, 3721.

    Article  Google Scholar 

  41. Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.

    Article  Google Scholar 

  42. Bai, Y. S.; Zhou, L.; Wang, J.; Wu, W. J.; McGilly, L. J.; Halbertal, D.; Lo, C. F. B.; Liu, F.; Ardelean, J.; Rivera, P. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 2020, 19, 1068–1073.

    Article  CAS  Google Scholar 

  43. Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

    Google Scholar 

  44. Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

    Article  CAS  Google Scholar 

  45. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  CAS  Google Scholar 

  46. Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

    Article  Google Scholar 

  47. Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

    Article  CAS  Google Scholar 

  48. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  Google Scholar 

Download references

Acknowledgment

We appreciate the support of the Hunan Province’s Key Research and Development Project (No. 2019GK2233), the National Natural Science Foundation of China (No. 61775241), the Hunan Science Fund for Distinguished Young Scholar (No. 2020JJ2059), Youth Innovation Team (No. 2019012) of CSU, Hunan Province Graduate Research and Innovation Project (No. CX20190177), and the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20190806144418859). Also, Y. P. L. acknowledges the support from the Central South University of the State Key Laboratory of High-Performance Complex Manufacturing Project (No. ZZYJKT2020-12). Z. W. L. thanks to the financial support from the Australian Research Council (ARC Discovery Projects, Nos. DP210103539, DP180102976, and DP130104231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zheng, H., Ding, J. et al. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 15, 9588–9594 (2022). https://doi.org/10.1007/s12274-022-4580-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4580-3

Keywords

Navigation