Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Nano Research
  3. Article

Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury

  • Research Article
  • Published: 27 July 2022
  • Volume 15, pages 9125–9134, (2022)
  • Cite this article
Download PDF
Nano Research Aims and scope Submit manuscript
Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury
Download PDF
  • Min Lan1,
  • Mengying Hou1,
  • Jing Yan1,
  • Qiurong Deng1,
  • Ziyin Zhao1,
  • Shixian Lv1,
  • Juanjuan Dang1,
  • Mengyuan Yin1,
  • Yong Ji2 &
  • …
  • Lichen Yin1 
  • 1027 Accesses

  • 10 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

Myocardial ischemia reperfusion (IR) injury is closely related to the overwhelming inflammation in the myocardium. Herein, cardiomyocyte-targeted nanotherapeutics were developed for the reactive oxygen species (ROS)-ultrasensitive co-delivery of dexamethasone (Dex) and RAGE small interfering RNA (siRAGE) to attenuate myocardial inflammation. PPTP, a ROS-degradable polycation based on PGE2-modified, PEGylated, ditellurium-crosslinked polyethylenimine (PEI) was developed to surface-decorate the Dex-encapsulated mesoporous silica nanoparticles (MSNs), which simultaneously condensed siRAGE and gated the MSNs to prevent the Dex pre-leakage. Upon intravenous injection to IR-injured rats, the nanotherapeutics could be efficiently transported into the inflamed cardiomyocytes via PGE2-assisted recognition of over-expressed E-series of prostaglandin (EP) receptors on the cell membranes. Intracellularly, the over-produced ROS degraded PPTP into small segments, promoting the release of siRAGE and Dex to mediate effective RAGE silencing (72%) and cooperative antiinflammatory effect. As a consequence, the nanotherapeutics notably suppressed the myocardial fibrosis and apoptosis, ultimately recovering the systolic function. Therefore, the current nanotherapeutics represent an effective example for the co-delivery and on-demand release of nucleic acid and chemodrug payloads, and might find promising utilities toward the synergistic management of myocardial inflammation.

Article PDF

Download to read the full article text

Similar content being viewed by others

MicroRNA-208a silencing against myocardial ischemia/reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes

Article 13 June 2023

Jianhui Lu, Jiaheng Zhang, … Yongbing Chen

Nanoparticle-Mediated Targeting of Cyclosporine A Enhances Cardioprotection Against Ischemia-Reperfusion Injury Through Inhibition of Mitochondrial Permeability Transition Pore Opening

Article Open access 10 February 2016

Gentaro Ikeda, Tetsuya Matoba, … Kensuke Egashira

DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism

Article 21 March 2023

Maryam Naseroleslami, Neda Mousavi Niri, … Nahid Aboutaleb

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Li, Y.; Chen, X.; Jin, R. H.; Chen, L.; Dang, M.; Cao, H.; Dong, Y.; Cai, B. L.; Bai, G.; Gooding, J. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021, 7, eabd6740.

    Article  CAS  Google Scholar 

  2. Huang, K.; Ozpinar, E. W.; Su, T.; Tang, J. N.; Shen, D. L.; Qiao, L.; Hu, S. Q.; Li, Z. H.; Liang, H. X.; Mathews, K. et al. An off-the-shelf artificial cardiac patch improves cardiac repair after myocardial infarction in rats and pigs. Sci. Transl. Med. 2020, 12, eaat9683.

    Article  Google Scholar 

  3. Zhu, D. S.; Li, Z. H.; Huang, K.; Caranasos, T. G.; Rossi, J. S.; Cheng, K. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat. Commun. 2021, 12, 1412.

    Article  CAS  Google Scholar 

  4. Li, Z. H.; Hu, S. Q.; Huang, K.; Su, T.; Cores, J.; Cheng, K. Targeted anti-IL-1β platelet microparticles for cardiac detoxing and repair. Sci. Adv. 2020, 6, eaay0589.

    Article  CAS  Google Scholar 

  5. Li, Y.; Chen, X. G.; Li, P.; Xiao, Q. X.; Kong, X. Q. CD47 antibody suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Am. J. Transl. Res. 2020, 12, 5908–5923.

    CAS  Google Scholar 

  6. Li, Z. H.; Zhu, D. S.; Hui, Q.; Bi, J. N.; Yu, B. J.; Huang, Z.; Hu, S. Q.; Wang, Z. Z.; Caranasos, T.; Rossi, J. et al. Injection of ROS-responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair. Adv. Funct. Mater. 2021, 31, 2004377.

    Article  CAS  Google Scholar 

  7. Hausenloy, D. J.; Yellon, D. M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 2016, 13, 193–209.

    Article  CAS  Google Scholar 

  8. Liu, M. R.; Lutz, H.; Zhu, D. S.; Huang, K.; Li, Z. H.; Dinh, P. U. C.; Gao, J. Q.; Zhang, Y.; Cheng, K. Bispecific antibody inhalation therapy for redirecting stem cells from the lungs to repair heart injury. Adv. Sci. 2021, 8, 2002127.

    Article  CAS  Google Scholar 

  9. Su, T.; Huang, K.; Ma, H.; Liang, H. X.; Dinh, P. U.; Chen, J.; Shen, D. L.; Allen, T. A.; Qiao, L.; Li, Z. H. et al. Platelet-inspired nanocells for targeted heart repair after ischemia/reperfusion injury. Adv. Funct. Mater. 2019, 29, 1803567.

    Article  Google Scholar 

  10. Liu, C. Y.; Zhang, Y. H.; Li, R. B.; Zhou, L. Y.; An, T.; Zhang, R. C.; Zhai, M.; Huang, Y.; Yan, K. W.; Dong, Y. H. et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat. Commun. 2018, 9, 29.

    Article  Google Scholar 

  11. Tang, Y. Q.; Zeng, Z. Y.; He, X.; Wang, T. T.; Ning, X. H.; Feng, X. L. siRNA crosslinked nanoparticles for the treatment of inflammation-induced liver injury. Adv. Sci. 2017, 4, 1600228.

    Article  Google Scholar 

  12. Shen, W. W.; Wang, R. J.; Fan, Q. Q.; Gao, X.; Wang, H.; Shen, Y.; Li, Y. W.; Cheng, Y. Y. Natural polyphenol inspired polycatechols for efficient siRNA delivery. CCS Chem. 2020, 2, 146–157.

    Article  CAS  Google Scholar 

  13. Wang, M.; Alberti, K.; Varone, A.; Pouli, D.; Georgakoudi, I.; Xu, Q. B. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Adv. Healthc. Mater. 2014, 3, 1398–1403.

    Article  CAS  Google Scholar 

  14. Yang, J. D.; Duan, S. Z.; Ye, H.; Ge, C. L; Piao, C. X.; Chen, Y. B.; Lee, M.; Yin, L. C. Pro-peptide-reinforced, mucus-penetrating pulmonary siRNA delivery mitigates cytokine storm in pneumonia. Adv. Funct. Mater. 2021, 31, 2008960.

    Article  CAS  Google Scholar 

  15. Hou, M. Y.; Wu, X. J.; Zhao, Z. Y.; Deng, Q. R.; Chen, Y. B.; Yin, L. C. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. Acta Biomater. 2022, 143, 344–355.

    Article  CAS  Google Scholar 

  16. Cai, C. D.; Zhang, X. S.; Li, Y. G.; Liu, X. Z.; Wang, S.; Lu, M. K.; Yan, X.; Deng, L. F.; Liu, S.; Wang, F. et al. Self-healing hydrogel embodied with macrophage-regulation and responsive-genesilencing properties for synergistic prevention of peritendinous adhesion. Adv. Mater. 2022, 34, 2106564.

    Article  CAS  Google Scholar 

  17. Shen, S. Y.; Zhang, L.; Li, M. R.; Feng, Z. Z.; Li, H. X.; Xu, X.; Lin, S. Q.; Li, P.; Zhang, C.; Xu, X. J. et al. Collaborative assembly-mediated siRNA delivery for relieving inflammation-induced insulin resistance. Nano Res. 2020, 13, 2958–2966.

    Article  Google Scholar 

  18. Hong, J.; Ku, S. H.; Lee, M. S.; Jeong, J. H.; Mok, H.; Choi, D.; Kim, S. H. Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction. Biomaterials 2014, 35, 7562–7573.

    Article  CAS  Google Scholar 

  19. Liang, Q. J.; Li, F. F.; Li, Y. J.; Liu, Y.; Lan, M.; Wu, S. H.; Wu, X. J.; Ji, Y.; Zhang, R. J.; Yin, L. C. Self-assisted membranepenetrating helical polypeptides mediate anti-inflammatory RNAi against myocardial ischemic reperfusion (IR) injury. Biomater. Sci. 2019, 7, 3717–3728.

    Article  CAS  Google Scholar 

  20. Piao, C. X.; Zhuang, C. Y.; Choi, M.; Ha, J.; Lee, M. A RAGE-antagonist peptide potentiates polymeric micelle-mediated intracellular delivery of plasmid DNA for acute lung injury gene therapy. Nanoscale 2020, 12, 13606–13617.

    Article  CAS  Google Scholar 

  21. Dhumal, D.; Lan, W. J.; Ding, L.; Jiang, Y. F.; Lyu, Z.; Laurini, E.; Marson, D.; Tintaru, A.; Dusetti, N.; Giorgio, S. et al. An ionizable supramolecular dendrimer nanosystem for effective siRNA delivery with a favorable safety profile. Nano Res. 2021, 14, 2247–2254.

    Article  CAS  Google Scholar 

  22. Shen, K.; Sun, G. D.; Chan, L.; He, L. Z.; Li, X. W.; Yang, S. X.; Wang, B. C.; Zhang, H.; Huang, J. R.; Chang, M. M. et al. Anti-inflammatory nanotherapeutics by targeting matrix metalloproteinases for immunotherapy of spinal cord injury. Small 2021, 17, 2102102.

    Article  CAS  Google Scholar 

  23. Rinoldi, C.; Zargarian, S. S.; Nakielski, P.; Li, X. R.; Liguori, A.; Petronella, F.; Presutti, D.; Wang, Q. S.; Costantini, M.; De Sio, L. et al. Nanotechnology-assisted RNA delivery: From nucleic acid therapeutics to COVID-19 vaccines. Small Methods 2021, 5, 2100402.

    Article  CAS  Google Scholar 

  24. Nie, J. J.; Qiao, B. K.; Duan, S.; Xu, C.; Chen, B. Y.; Hao, W. J.; Yu, B. R.; Li, Y. L.; Du, J.; Xu, F. J. Unlockable nanocomplexes with self-accelerating nucleic acid release for effective staged gene therapy of cardiovascular diseases. Adv. Mater. 2018, 30, 1801570.

    Article  Google Scholar 

  25. Hao, K.; Guo, Z. P.; Lin, L.; Sun, P. J.; Li, Y. H.; Tian, H. Y.; Chen, X. S. Covalent organic framework nanoparticles for anti-tumor gene therapy. Sci. China Chem. 2021, 64, 1235–1241.

    Article  CAS  Google Scholar 

  26. Xu, C. F.; Lu, Z. D.; Luo, Y. L.; Liu, Y.; Cao, Z. T.; Shen, S.; Li, H. J.; Liu, J.; Chen, K. G.; Chen, Z. Y. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 2018, 9, 4092.

    Article  Google Scholar 

  27. Weng, Y. H.; Xiao, H. H.; Zhang, J. C.; Liang, X. J.; Huang, Y. Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 2019, 37, 801–825.

    Article  CAS  Google Scholar 

  28. Ge, C. L.; Yang, J. D.; Duan, S. Z.; Liu, Y.; Meng, F. H.; Yin, L. C. Fluorinated α-helical polypeptides synchronize mucus permeation and cell penetration toward highly efficient pulmonary siRNA delivery against acute lung injury. Nano Lett. 2020, 20, 1738–1746.

    Article  CAS  Google Scholar 

  29. Hu, B.; Li, B.; Li, K.; Liu, Y. Y.; Li, C. H.; Zheng, L. L.; Zhang, M. J.; Yang, T. R.; Guo, S.; Dong, X. Y. et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv. 2022, 8, eabm1418.

    Article  Google Scholar 

  30. Wang, C.; Liu, Q.; Zhang, Z. Z.; Wang, Y.; Zheng, Y. D.; Hao, J. L.; Zhao, X. Z.; Liu, Y.; Shi, L. Q. Tumor targeted delivery of siRNA by a nano-scale quaternary polyplex for cancer treatment. Chem. Eng. J. 2021, 425, 130590.

    Article  CAS  Google Scholar 

  31. Ye, L.; Liu, H. M.; Fei, X.; Ma, D.; He, X. Z.; Tang, Q. Y.; Zhao, X.; Zou, H. B.; Chen, X. J.; Kong, X. M. et al. Enhanced endosomal escape of dendrigraft poly-L-lysine polymers for the efficient gene therapy of breast cancer. Nano Res. 2022, 15, 1135–1144.

    Article  CAS  Google Scholar 

  32. Liu, Y.; Yin, L. C. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv. Drug Deliv. Rev 2021, 171, 139–163.

    Article  CAS  Google Scholar 

  33. Liu, X.; Zhao, Z. Y.; Wu, F.; Chen, Y. B.; Yin, L. C. Tailoring hyperbranched poly(β-amino ester) as a robust and universal platform for cytosolic protein delivery. Adv. Mater. 2022, 34, 2108116.

    Article  CAS  Google Scholar 

  34. Wen, L. J.; Peng, Y.; Wang, K.; Huang, Z. H.; He, S. Y.; Xiong, R. W.; Wu, L. P.; Zhang, F. T.; Hu, F. Q. Regulation of pathological BBB restoration via nanostructured ROS-responsive glycolipid-like copolymer entrapping siVEGF for glioblastoma targeted therapeutics. Nano Res. 2022, 15, 1455–1465.

    Article  CAS  Google Scholar 

  35. Zheng, M.; Liu, Y. Y.; Wang, Y. B.; Zhang, D. Y.; Zou, Y.; Ruan, W. M.; Yin, J. L.; Tao, W.; Park, J. B.; Shi, B. Y. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater. 2019, 31, 1903277.

    Article  Google Scholar 

  36. Wang, J. X.; He, X. Y.; Shen, S.; Cao, Z. Y.; Yang, X. Z. ROSsensitive cross-linked polyethylenimine for red-light-activated siRNA therapy. ACS Appl. Mater. Interfaces 2019, 11, 1855–1863.

    Article  CAS  Google Scholar 

  37. Zhang, M. J.; Weng, Y. H.; Cao, Z. Y.; Guo, S.; Hu, B.; Lu, M.; Guo, W. S.; Yang, T. R.; Li, C. H.; Yang, X. Z. et al. ROS-activatable siRNA-engineered polyplex for NIR-triggered synergistic cancer treatment. ACS Appl. Mater. Interfaces 2020, 12, 32289–32300.

    Article  CAS  Google Scholar 

  38. Ye, H.; Zhou, Y.; Liu, X.; Chen, Y. B.; Duan, S. Z.; Zhu, R. Y.; Liu, Y.; Yin, L. C. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules 2019, 20, 2441–2463.

    Article  CAS  Google Scholar 

  39. Li, F.; Li, T. Y.; Cao, W.; Wang, L.; Xu, H. P. Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials 2017, 133, 208–218.

    Article  CAS  Google Scholar 

  40. Zhou, W. Q.; Wang, L.; Li, F.; Zhang, W. N.; Huang, W.; Huo, F. W.; Xu, H. P. Selenium-containing polymer@metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system. Adv. Funct. Mater. 2017, 27, 1605465.

    Article  Google Scholar 

  41. Ji, S. B.; Cao, W.; Yu, Y.; Xu, H. P. Dynamic diselenide bonds: Exchange reaction induced by visible light without catalysis. Angew. Chem., Int. Ed. 2014, 53, 6781–6785.

    Article  CAS  Google Scholar 

  42. Wang, H.; Zhang, S.; Lv, J.; Cheng, Y. Y. Design of polymers for siRNA delivery: Recent progress and challenges. View 2021, 2, 20200026.

    Article  CAS  Google Scholar 

  43. Wen, Y. T.; Bai, H. Z.; Zhu, J. L.; Song, X.; Tang, G. P.; Li, J. A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Sci. Adv. 2020, 6, eabc2148.

    Article  CAS  Google Scholar 

  44. Zhuang, J.; Gong, H.; Zhou, J. R.; Zhang, Q. Z.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6, eaaz6108.

    Article  CAS  Google Scholar 

  45. Yan, J.; Liu, X.; Wu, F.; Ge, C. L.; Ye, H.; Chen, X. Y.; Wei, Y. S.; Zhou, R. X.; Duan, S. Z.; Zhu, R. Y. et al. Platelet pharmacytes for the hierarchical amplification of antitumor immunity in response to self-generated immune signals. Adv. Mater. 2022, 34, 2109517.

    Article  CAS  Google Scholar 

  46. Bellis, A.; Mauro, C.; Barbato, E.; Di Gioia, G.; Sorriento, D.; Trimarco, B.; Morisco, C. The rationale of neprilysin inhibition in prevention of myocardial ischemia-reperfusion injury during ST-elevation myocardial infarction. Cells 2020, 9, 2134.

    Article  CAS  Google Scholar 

  47. Hou, M. Y.; Wei, Y. S.; Zhao, Z. Y.; Han, W. Q.; Zhou, R. X.; Zhou, Y.; Zheng, Y. R.; Yin, L. C. Immuno-engineered nanodecoys for the multi-target anti-inflammatory treatment of autoimmune diseases. Adv. Mater. 2022, 34, 2108817.

    Article  CAS  Google Scholar 

  48. Sager, H. B.; Dutta, P.; Dahlman, J. E.; Hulsmans, M.; Courties, G.; Sun, Y.; Heidt, T.; Vinegoni, C.; Borodovsky, A.; Fitzgerald, K. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 2016, 8, 342ra80.

    Article  Google Scholar 

  49. Wang, Y.; Hou, M. Y.; Duan, S. Z.; Zhao, Z. Y.; Wu, X. J.; Chen, Y. B.; Yin, L. C. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury. Bioact. Mater. 2022, 17, 320–333.

    Article  CAS  Google Scholar 

  50. Yin, N.; Tan, X. Y.; Liu, H. B.; He, F. M.; Ding, N.; Gou, J. X.; Yin, T.; He, H. B.; Zhang, Y.; Tang, X. A novel indomethacin/methotrexate/MMP-9 siRNA in situ hydrogel with dual effects of anti-inflammatory activity and reversal of cartilage disruption for the synergistic treatment of rheumatoid arthritis. Nanoscale 2020, 12, 8546–8562.

    Article  CAS  Google Scholar 

  51. Wang, Q.; Jiang, H.; Li, Y.; Chen, W. F.; Li, H. M.; Peng, K.; Zhang, Z. R.; Sun, X. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials 2017, 122, 10–22.

    Article  CAS  Google Scholar 

  52. Jiang, K. Y.; Weaver, J. D.; Li, Y. J. Y.; Chen, X. J.; Liang, J. P.; Stabler, C. L. Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 2017, 114, 71–81.

    Article  CAS  Google Scholar 

  53. Li, X. D.; Wei, Y. S.; Wu, Y. C.; Yin, L. C. Hypoxia-induced proprotein therapy assisted by a self-catalyzed nanozymogen. Angew. Chem., Int. Ed. 2020, 59, 22544–22553.

    Article  CAS  Google Scholar 

  54. Sun, P. C.; Scharnweber, T.; Wadhwani, P.; Rabe, K. S.; Niemeyer, C. M. DNA-directed assembly of a cell-responsive biohybrid interface for cargo release. Small Methods 2021, 5, 2001049.

    Article  CAS  Google Scholar 

  55. Dong, P.; Hu, J. L.; Yu, S. Y.; Zhou, Y. Z.; Shi, T. H.; Zhao, Y.; Wang, X. Y.; Liu, X. Q. A mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy. Small Methods 2021, 5, 2100581.

    Article  CAS  Google Scholar 

  56. Gan, Q.; Zhu, J. Y.; Yuan, Y.; Liu, H. L.; Qian, J. C.; Li, Y. S.; Liu, C. S. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J. Mater. Chem. B 2015, 3, 2056–2066.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the funding support from the National Natural Science Foundation of China (No. 52033006 and 51873142), Suzhou Science and Technology Development Project (No. SYS2019072), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 project, Suzhou Key Laboratory of Nanotechnology and Biomedicine, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Author information

Authors and Affiliations

  1. Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China

    Min Lan, Mengying Hou, Jing Yan, Qiurong Deng, Ziyin Zhao, Shixian Lv, Juanjuan Dang, Mengyuan Yin & Lichen Yin

  2. Department of Cardiothoracic Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China

    Yong Ji

Authors
  1. Min Lan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mengying Hou
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jing Yan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Qiurong Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ziyin Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Shixian Lv
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Juanjuan Dang
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Mengyuan Yin
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Yong Ji
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Lichen Yin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Jing Yan, Yong Ji or Lichen Yin.

Electronic Supplementary Material

Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Hou, M., Yan, J. et al. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury. Nano Res. 15, 9125–9134 (2022). https://doi.org/10.1007/s12274-022-4553-6

Download citation

  • Received: 07 April 2022

  • Revised: 11 May 2022

  • Accepted: 16 May 2022

  • Published: 27 July 2022

  • Issue Date: October 2022

  • DOI: https://doi.org/10.1007/s12274-022-4553-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • small interfering RNA (siRNA) delivery
  • reactive oxygen species (ROS) responsiveness
  • ditellurium-crosslinked polyethylenimine (PEI)
  • myocardial ischemia reperfusion injury
  • anti-inflammation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature