Ma, L. Y.; Chen, W. W.; Gao, R. L.; Liu, L. S.; Zhu, M. L.; Wang, Y. J.; Wu, Z. S.; Li, H. J.; Gu, D. F.; Yang, Y. J. et al. China cardiovascular diseases report 2018: An updated summary. J. Geriatr. Cardiol. 2020, 17, 1–8.
Google Scholar
Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.
Article
CAS
Google Scholar
Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.
CAS
Article
Google Scholar
Sempionatto, J. R.; Lin, M. Y.; Yin, L.; De La paz, E; Pei, K. X.; Sonsaard, T.; de Loyola Silva, A. N.; Khorshed, A. A.; Zhang, F. Y.; Tostado, N. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748.
CAS
Article
Google Scholar
Son, D.; Lee, J.; Lee, D. J.; Ghaffari, R.; Yun, S. M.; Kim, S. J.; Lee, J. E.; Cho, H. R.; Yoon, S.; Yang, S. X. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015, 9, 5937–5946.
CAS
Article
Google Scholar
Chen, Z. Y.; Boyajian, N.; Lin, Z. X.; Yin, R. T.; Obaid, S. N.; Tian, J. B.; Brennan, J. A.; Chen, S. W.; Miniovich, A. N.; Lin, L. Q. et al. Flexible and transparent metal nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping. Adv. Mater. Technol. 2021, 6, 2100225.
CAS
Article
Google Scholar
Choi, Y. S.; Yin, R. T.; Pfenniger, A.; Koo, J.; Avila, R.; Lee, K. B.; Chen, S. W.; Lee, G.; Li, G.; Qiao, Y. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228–1238.
CAS
Article
Google Scholar
Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 2019, 14, 156–160.
CAS
Article
Google Scholar
Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 2016, 15, 679–685.
CAS
Article
Google Scholar
Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, T.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.
CAS
Article
Google Scholar
Gong, S.; Cheng, W. L. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314.
Article
CAS
Google Scholar
Cheng, L.; Wang, X. W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020, 32, 1902333.
CAS
Article
Google Scholar
Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, L.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.
CAS
Article
Google Scholar
Cheng, E. M.; Lim, E. A.; Tan, W. H.; Mustafa, W. A.; Syed Idrus, S. Z.; Mohd Nasir, N. F.; Abdulmalek, M.; Beh, H. G.; Lee, Y. S.; Mou Yusop, S. N. A. Comparative study between wearable sensor and cuff arm blood pressure meter in measuring blood pressure and heart rate monitor using statistical approach. J. Phys.: Conf. Ser. 2020, 1529, 022082.
Google Scholar
Song, J. K.; Do, K.; Koo, J. H.; Son, D.; Kim, D. H. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull. 2019, 44, 643–656.
Article
CAS
Google Scholar
Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.
Article
CAS
Google Scholar
Valiev, R. Nanomaterial advantage. Nature 2002, 419, 887–889.
CAS
Article
Google Scholar
Lee, Y.; Kim, J.; Koo, J. H.; Kim, T. H.; Kim, D. H. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 2018, 35, 1–11.
Article
CAS
Google Scholar
Hong, S.; Lee, S.; Kim, D. H. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 2019, 107, 2185–2197.
CAS
Article
Google Scholar
Kim, T.; Cho, M.; Yu, K. J. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials, 2018, 11, 1163.
Article
CAS
Google Scholar
Lee, W.; Yun, H.; Song, J. K.; Sunwoo, S. H.; Kim, D. H. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc. Mater. Res. 2021, 2, 266–281.
CAS
Article
Google Scholar
Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.
CAS
Article
Google Scholar
Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.
CAS
Article
Google Scholar
Yang, W. F.; Gong, W.; Hou, C. Y.; Su, Y.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 5541.
CAS
Article
Google Scholar
Li, D. F.; He, J. H.; Song, Z.; Yao, K. M.; Wu, M. G.; Fu, H. R.; Liu, Y. M.; Gao, Z.; Zhou, J. K.; Wei, L. et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 2021, 7, 85.
Article
Google Scholar
Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.
Article
CAS
Google Scholar
Park, J.; Choi, S.; Janardhan, A. H.; Lee, S. Y.; Raut, S.; Soares, J.; Shin, K.; Yang, S. H.; Lee, C.; Kang, K. W. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 2016, 8, 344ra86.
Google Scholar
Anderson, J. M.; Miller, K. M. Biomaterial biocompatibility and the macrophage. Biomaterials 1984, 5, 5–10.
CAS
Article
Google Scholar
Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.
CAS
Article
Google Scholar
Seo, K. J.; Qiang, Y.; Bilgin, I.; Kar, S.; Vinegoni, C.; Weissleder, R.; Fang, H. Transparent electrophysiology microelectrodes and interconnects from metal nanomesh. ACS Nano 2017, 11, 4365–4372.
CAS
Article
Google Scholar
Hwang, S. W.; Lee, C. H.; Cheng, H.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.
CAS
Article
Google Scholar
Sun, M. J.; Li, Z.; Yang, C. Y.; Lv, Y. J.; Yuan, L.; Shang, C. X.; Liang, S. Y.; Guo, B. W.; Liu, Y.; Li, Z. et al. Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.
CAS
Article
Google Scholar
Zou, Y.; Bo, L.; Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021, 1, 364–382.
Article
Google Scholar
Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.
Article
CAS
Google Scholar
Padrela, L.; Rodrigues, M. A.; Duarte, A.; Dias, A. M. A.; Braga, M. E. M.; de Sousa, H. C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals—A comprehensive review. Adv. Drug Deliver. Rev. 2018, 131, 22–78.
CAS
Article
Google Scholar
Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.
CAS
Article
Google Scholar
Liu, W. C.; Fang, X.; Chen, Q. Q.; Li, Y. X.; Li, T. Reliability analysis of an integrated device of ECG, PPG and pressure pulse wave for cardiovascular disease. Microelectron. Reliab. 2018, 87, 183–187.
Article
Google Scholar
Deng, J.; Yuk, H.; Wu, J. J.; Varela, C. E.; Chen, X. Y.; Roche, E. T.; Guo, C. F.; Zhao, X. H. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229–236.
CAS
Article
Google Scholar
Li, H. G.; Liu, H. Z.; Sun, M. Z.; Huang, Y. A.; Xu, L. Z. 3D interfacing between soft electronic tools and complex biological tissues. Adv. Mater 2021, 33, 2004425.
CAS
Article
Google Scholar
Kshirsagar, T.; Dickreuter, S.; Mierzejewski, M.; Burkhardt, C. J.; Chassé, T.; Fleischer, M.; Jones, P. D. Transparent graphene/PEDOT: PSS microelectrodes for electro- and optophysiology. Adv. Mater. Technol. 2019, 4, 1800318.
Article
CAS
Google Scholar
Ricciardulli A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.
Article
CAS
Google Scholar
Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W. F.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.
CAS
Article
Google Scholar
Zhao, S. Y.; Li, G.; Tong, C. J.; Chen, W. J.; Wang, P. X.; Dai, J. K.; Fu, X. F.; Xu, Z.; Liu, X. J.; Lu, L. L. et al. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat. Commun. 2020, 11, 1788.
CAS
Article
Google Scholar
Stetsenko, M.; Margitych, T.; Kryvyi, S.; Maksimenko, L.; Hassan, A.; Filonenko, S.; Li, B. K.; Qu, J. L.; Scheer, E.; Snegir, S. Gold nanoparticle self-aggregation on surface with 1, 6-hexanedithiol functionalization. Nanomaterials 2020, 10, 512.
CAS
Article
Google Scholar
Liu, J.; Zhang, X. Y.; Liu, Y. X.; Rodrigo, M.; Loftus, P. D.; Aparicio-Valenzuela, J.; Zheng, J. K.; Pong, T. Cyr, K. J.; Babakhanian, M. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 14769–14778.
CAS
Article
Google Scholar
Narayan, S. M.; Shivkumar, K.; Krummen, D. E.; Miller, J. M.; Rappel, W. J. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: Stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ. Arrhythm. Electrophysiol. 2013, 6, 58–67.
Article
Google Scholar
Bradley, C. J.; Haines, D. E. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 2136–3147.
Article
Google Scholar
Haïssaguerre, M.; Sanders, P.; Hocini, M.; Takahashi, Y.; Rotter, M.; Sacher, F.; Rostock, T.; Hsu, L. F.; Bordachar, P.; Reuter, S. et al. Catheter ablation of long-lasting persistent atrial fibrillation: Critical structures for termination. J. Cardiovasc. Electrophysiol. 2005, 16, 1125–1137.
Article
Google Scholar
Li, J.; Kang, L.; Yu, Y. H.; Long, Y.; Jeffery, J. J.; Cai, W. B.; Wang, X. D. Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 2018, 51, 728–735.
CAS
Article
Google Scholar
Galassi, T. V.; Antman-Passig, M.; Yaari, Z.; Jessurun, J.; Schwartz, R. E.; Heller, D. A. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 2020, 15, e0226791.
CAS
Article
Google Scholar
Lin, W. C.; Yao, C. M.; Huang, T. Y.; Cheng, S. J.; Tang, C. M. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent. Mater. 2019, 35, 751–762.
CAS
Article
Google Scholar
Ouyang, H.; Li, Z.; Gu, M.; Hu, Y. R.; Xu, L. L.; Jiang, D. J.; Cheng, S. J.; Zou, Y.; Deng, Y.; Shi, B. J. et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv. Mater. 2021, 33, 2102302.
CAS
Article
Google Scholar
Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.
Google Scholar
Sempionatto, J. R.; Moon, J. M.; Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: Personalized data processing for predicting blood glucose concentrations. ACS Sens. 2021, 6, 1875–1883.
CAS
Article
Google Scholar
Fuchs, F. D.; Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292.
CAS
Article
Google Scholar
Yoo, S.; Baek, H.; Doh, K.; Jeong, J.; Ahn, S.; Oh, I. Y.; Kim, K. Validation of the mobile wireless digital automatic blood pressure monitor using the cuff pressure oscillometric method, for clinical use and self-management, according to international protocols. Biomed. Eng. Lett. 2018, 8, 399–404.
Article
Google Scholar
Cox, D. J.; Fang, K.; McCall, A. L.; Conaway, M. R.; Banton, T. A.; Moncrief, M. A.; Diamond, A. M.; Taylor, A. G. Behavioral strategies to lower postprandial glucose in those with type 2 diabetes may also lower risk of coronary heart disease. Diabetes Ther. 2019, 10, 277–281.
CAS
Article
Google Scholar
Bandodkar, A. J.; Jia, W. Z.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398.
CAS
Article
Google Scholar
Chen, Y. H.; Lu, S. Y.; Zhang, S. S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B. W.; Wang, X. Y.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017, 3, e1701629.
Article
Google Scholar
Pu, Z. H.; Zhang, X. G.; Yu, H. X.; Tu, J. A.; Chen, H. L.; Liu, Y. C.; Su, X.; Wang, R. D.; Zhang, L.; Li, D. C. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021, 1, eabd0199.
Article
CAS
Google Scholar
Duchateau, J.; Sacher, F.; Pambrun, T.; Derval, N.; Chamorro-Servent, J.; Denis, A.; Ploux, S.; Hocini, M.; Jaïs, P.; Bernus, O. et al. Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm 2019, 16, 435–442.
Article
Google Scholar
Koo, J. H.; Song, J. K.; Kim, D. H.; Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 2021, 3, 1528–1540.
CAS
Article
Google Scholar
Kim, D. H.; Ghaffari, R.; Lu, N. S.; Wang, S. D.; Lee, S. P.; Keum, H.; D’Angelo, R.; Klinker, L.; Su, Y. W.; Lu, C. F. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. USA 2012, 109, 19910–19915.
CAS
Article
Google Scholar
Koh, A.; Gutbrod, S. R.; Meyers, J. D.; Lu, C. F.; Webb, R. C.; Shin, G.; Li, Y. H.; Kang, S. K.; Huang, Y. G.; Efimov, I. R. et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Adv. Healthc. Mater. 2016, 5, 373–381.
CAS
Article
Google Scholar
Mackman, N.; Bergmeier, W.; Stouffer, G. A.; Weitz, J. I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov. 2020, 19, 333–352.
CAS
Article
Google Scholar
Wolberg, A. S.; Rosendaal, F. R.; Weitz, J. I.; Jaffer, I. H.; Agnelli, G.; Baglin, T.; Mackman, N. Venous thrombosis. Nat. Rev. Dis. Primers 2015, 1, 15006.
Article
Google Scholar
Li, T.; Feng, Z. Q.; Qu, M. H.; Yan, K.; Yuan, T.; Gao, B. B.; Wang, T.; Dong, W.; Zheng, J. Core/shell piezoelectric nanofibers with spatial self-orientated ß-phase nanocrystals for real-time micropressure monitoring of cardiovascular walls. ACS Nano 2019, 13, 10062–10073.
CAS
Article
Google Scholar
Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-poweeed wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.
CAS
Article
Google Scholar
Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.
Article
CAS
Google Scholar
Cohn, J. N.; El Shahawy, M. Monitoring cardiovascular disease progression. Open J. Cardiol. Heart Dis. 2019, 3, OJCHD. 000552.2019.
Google Scholar
Sharma, P. A.; Maheshwari, R.; Tekade, M.; Tekade, R. K. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Curr. Pharm. Des. 2015, 21, 4465–4478.
CAS
Article
Google Scholar
Chu, K. F.; Dupuy, D. E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208.
CAS
Article
Google Scholar
Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.
CAS
Article
Google Scholar
Schneider, O.; Moruzzi, A.; Fuchs, S.; Grobel, A.; Schulze, H. S.; Mayr, T.; Loskill, P. Fusing spheroids to aligned µ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. Mater. Today Bio 2022, 15, 100280.
CAS
Article
Google Scholar
Keum, D. H.; Mun, J. H.; Hwang, B. W.; Kim, J.; Kim, H.; Jo, W.; Ha, D. H.; Cho, D. W.; Kim, C.; Hahn, S. K. Smart microbubble eluting theranostic stent for noninvasive ultrasound imaging and prevention of restenosis. Small 2017, 13, 1602925.
Article
CAS
Google Scholar
Niccoli, G.; Montone, R. A.; Ferrante, G.; Crea, F. The evolving role of inflammatory biomarkers in risk assessment after stent implantation. J. Am. Coll. Cardiol. 2010, 56, 1783–1793.
Article
Google Scholar
Jukema, J. W.; Verschuren, J. J. W.; Ahmed, T. A. N.; Quax, P. H. A. Restenosis after PCI. Part 1: Pathophysiology and risk factors. Nat. Rev. Cardiol. 2012, 9, 53–62.
CAS
Article
Google Scholar
Van Lith, R.; Baker, E.; Ware, H.; Yang, J.; Farsheed, A. C.; Sun, C.; Ameer, G. 3D - printing strong high - resolution antioxidant bioresorbable vascular stents. Adv. Mater. Technol. 2016, 1, 1600138.
Article
CAS
Google Scholar
Mizuno, A.; Changolkar, S.; Patel, M. S. Wearable devices to monitor and reduce the risk of cardiovascular disease: Evidence and opportunities. Annu. Rev. Med. 2021, 72, 459–471.
CAS
Article
Google Scholar
Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448.
CAS
Article
Google Scholar
Morales, D. L. S.; Khan, M. S.; Gottlieb, E. A.; Krishnamurthy, R.; Dreyer, W. J.; Adachi, I. Implantation of total artificial heart in congenital heart disease. Semin. Thorac. Cardiov. 2012, 24, 142–143.
Article
Google Scholar
Roberts, P. A.; Boudjemline, Y.; Cheatham, J. P.; Eicken, A.; Ewert, P.; McElhinney, D. B.; Hill, S. L.; Berger, F.; Khan, D.; Schranz, D. et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J. Am. Coll. Cardiol. 2011, 58, 117–122.
Article
Google Scholar
Ardehali, A.; Esmailian, F.; Deng, M.; Soltesz, E.; Hsich, E.; Naka, Y.; Mancini, D.; Camacho, M.; Zucker, M.; Leprince, P. et al. Exvivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 2015, 385, 2577–2584.
Article
Google Scholar
Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A.; Johansson, S.; van der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 2021, 117, 2742–2754.
CAS
Article
Google Scholar
Starr, A.; Fessler, C. L.; Grunkemeier, G.; He, G. W. Heart valve replacement surgery: Past, present and future. Clin. Exp. Pharmacol. Physiol. 2002, 29, 735–738.
CAS
Article
Google Scholar
Kosaraju, A.; Goyal, A.; Grigorova, Y.; Makaryus, A. N. Left ventricular ejection fraction; StatPearls Publishing: Treasure Island, FL, USA; 2022. https://www.ncbi.nlm.nih.gov/books/NBK459131/ (accessed Mar 20, 2022).
Google Scholar
Mehmel, H. C.; Stockins, B.; Ruffmann, K.; von Olshausen, K.; Schuler, G.; Kübler, W. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 1981, 63, 1216–1222.
CAS
Article
Google Scholar
Ross, J. Jr. Transseptal left heart catheterization: A 50-year odyssey. J. Am. Coll. Cardiol. 2008, 51, 2107–2115.
Article
Google Scholar
Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.
CAS
Article
Google Scholar
Yang, W. Y.; Gong, Y.; Yao, C.-Y.; Shrestha, M.; Jia, Y. Y.; Qiu, Z.; Fan, Q. H.; Weber, A.; Li, W. A fully transparent, flexible PEDOT: PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Lab Chip 2021, 21, 1096–1108.
CAS
Article
Google Scholar
Liao, C. Z.; Li, Y. C.; Tjong, S. C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564.
Article
CAS
Google Scholar
Yang, Q. Q.; Wei, T.; Yin, R. T.; Wu, M. Z.; Xu, Y. M.; Koo, J.; Choi, Y. S.; Xie, Z. Q.; Chen, S. W.; Kandela, I. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 2021, 20, 1559–1570.
CAS
Article
Google Scholar
Dreifus, L. S.; Watanabe, Y.; Haiat, R.; Kimbiris, D. Atrioventricular block. Am. J. Cardiol. 1971, 28, 371–380.
CAS
Article
Google Scholar
Gutruf, P.; Yin, R. T.; Lee, K. B.; Ausra, J.; Brennan, J. A.; Qiao, Y.; Xie, Z. Q.; Peralta, R.; Talarico, O.; Murillo, A. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742.
CAS
Article
Google Scholar
Del Nido, P.; Goldman, B. S. Temporary epicardial pacing after open heart surgery: Complications and prevention. J. Card. Surg. 1989, 4, 99–103.
CAS
Article
Google Scholar
Elmistekawy, E. Safety of temporary pacemaker wires. Asian Cardiovasc. Thorac. Ann. 2019, 27, 341–346.
Article
Google Scholar
Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing - driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.
CAS
Article
Google Scholar
Huang, S. T.; Dong, J. Z.; Du, X.; Wu, J. H.; Yu, R. H.; Long, D. Y.; Ning, M.; Sang, C. H.; Jiang, C. X.; Bai, R. et al. Relationship between ablation lesion size estimated by ablation index and different ablation settings—An ex vivo porcine heart study. J. Cardiovasc. Transl. 2020, 13, 965–969.
Article
Google Scholar
Jaworek, M.; Gelpi, G.; Romagnoni, C.; Lucherini, F.; Contino, M.; Fiore, G. B.; Vismara, R.; Antona, C. Long-arm clip for transcatheter edge-to-edge treatment of mitral and tricuspid regurgitation—Ex-vivo beating heart study. Struct. Heart 2019, 3, 211–219.
Article
Google Scholar
Zuppinger, C. 3D cardiac cell culture: A critical review of current technologies and applications. Front. Cardiovasc. Med. 2019, 6, 87.
CAS
Article
Google Scholar
Sander, V.; Suñe, G.; Jopling, C.; Morera, C.; Belmonte, J. C. I. Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts. Nat. Protoc. 2013, 8, 800–809.
Article
CAS
Google Scholar
Das, M.; Molnar, P.; Gregory, C.; Riedel, L.; Jamshidi, A.; Hickman, J. J. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 2004, 25, 5643–5647.
CAS
Article
Google Scholar
Jimbo, Y.; Sasaki, D.; Ohya, T.; Lee, S.; Lee, W.; Hassani, F. A.; Yokota, T.; Matsuura, K.; Umezu, S.; Shimizu, T. et al. An organic transistor matrix for multipoint intracellular action potential recording. Proc. Natl. Acad. Sci. USA 2021, 118, e2022300118.
CAS
Article
Google Scholar
Dipalo, M.; Rastogi, S. K.; Matino, L.; Garg, R.; Bliley, J.; Iachetta, G.; Melle, G.; Shrestha, R.; Shen, S.; Santoro, F. et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci. Adv. 2021, 7, eabd5175.
CAS
Article
Google Scholar
Abbott, J.; Ye, T. Y.; Qin, L.; Jorgolli, M.; Gertner, R. S.; Ham, D.; Park, H. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 2017, 12, 460–466.
CAS
Article
Google Scholar
Bers, D. M.; Barry, W. H.; Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res. 2003, 57, 897–912.
CAS
Article
Google Scholar
Brown, A. M.; Lee, K. S.; Powell, T. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 1981, 318, 455–477.
CAS
Article
Google Scholar
Gouwens, N. W.; Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 2009, 29, 6239–6249.
CAS
Article
Google Scholar
Gu, Y.; Wang, C. F.; Kim, N.; Zhang, J. X.; Wang, T. M.; Stowe, J.; Nasiri, R.; Li, J. F.; Zhang, D. B.; Yang, A. et al. Three-dimensional transistor arrays for intra-and inter-cellular recording. Nat. Nanotechnol. 2022, 17, 292–300.
CAS
Article
Google Scholar
Liu, Y. L.; Huang, W. H. Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem., Int. Edit. 2021, 60, 2757–2767.
CAS
Article
Google Scholar
Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.
CAS
Article
Google Scholar
Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. Highperformance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.
CAS
Article
Google Scholar
Feiner, R.; Fleischer, S.; Shapira, A.; Kalish, O.; Dvir, T. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J. Control. Release 2018, 281, 189–195.
CAS
Article
Google Scholar
Griffith, L. G.; Naughton, G. Tissue engineering-current challenges and expanding opportunities. Science 2002, 295, 1009–1014.
CAS
Article
Google Scholar
Dai, X. C.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 2016, 11, 776–782.
CAS
Article
Google Scholar
Yu, S. Y.; Huang, S.; Ding, Y. S.; Wang, W.; Wang, A. Y.; Lu, Y. Transient receptor potential ion-channel subfamily V member 4: A potential target for cancer treatment. Cell Death Dis. 2019, 10, 497.
Article
Google Scholar
Schanze, N.; Bode, C.; Duerschmied, D. Platelet contributions to myocardial ischemia/reperfusion injury. Front. Immunol. 2019, 10, 1260.
CAS
Article
Google Scholar
Saha, P.; Sharma, S.; Korutla, L.; Datla, S. R.; Shoja-Taheri, F.; Mishra, R.; Bigham, G. E.; Sarkar, M.; Morales, D.; Bittle G. et al. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci. Transl. Med. 2019, 11, eaau1168.
CAS
Article
Google Scholar
Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.
CAS
Article
Google Scholar
Prevoteau, A.; Soulié-Ziakovic, C.; Leibler, L. Universally dispersible carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 19961–19964.
CAS
Article
Google Scholar
Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Erratum: Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0055.
Article
Google Scholar
Song, E. M.; Li, J. H.; Won, S. M.; Bai, W. B.; Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603.
CAS
Article
Google Scholar
Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.
Article
Google Scholar