Skip to main content

Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs)

Abstract

Cardiovascular diseases (CVDs) are one of the most serious diseases threatening human health in the world. Therefore, effective monitoring and treatment of CVDs are urgently needed. Compared with traditional rigid devices, nanomaterials based flexible devices open up new opportunities for further development beneficial from the unique properties of nanomaterials which contribute to excellent performance to better prevent and treat CVDs. This review summarizes recent advances of nanomaterials based flexible devices for the monitoring and treatment of CVDs. First, we review the outstanding characteristics of nanomaterials. Next, we introduce flexible devices based on nanomaterials for practical use in CVDs including in vivo, ex vivo, and in vitro methods. At last, we make a conclusion and discuss the further development needed for nanomaterials and monitoring and treatment devices to better care CVDs.

This is a preview of subscription content, access via your institution.

References

  1. Ma, L. Y.; Chen, W. W.; Gao, R. L.; Liu, L. S.; Zhu, M. L.; Wang, Y. J.; Wu, Z. S.; Li, H. J.; Gu, D. F.; Yang, Y. J. et al. China cardiovascular diseases report 2018: An updated summary. J. Geriatr. Cardiol. 2020, 17, 1–8.

    Google Scholar 

  2. Hong, Y. J.; Jeong, H.; Cho, K. W.; Lu, N. S.; Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1808247.

    Article  CAS  Google Scholar 

  3. Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

    CAS  Article  Google Scholar 

  4. Sempionatto, J. R.; Lin, M. Y.; Yin, L.; De La paz, E; Pei, K. X.; Sonsaard, T.; de Loyola Silva, A. N.; Khorshed, A. A.; Zhang, F. Y.; Tostado, N. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748.

    CAS  Article  Google Scholar 

  5. Son, D.; Lee, J.; Lee, D. J.; Ghaffari, R.; Yun, S. M.; Kim, S. J.; Lee, J. E.; Cho, H. R.; Yoon, S.; Yang, S. X. et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015, 9, 5937–5946.

    CAS  Article  Google Scholar 

  6. Chen, Z. Y.; Boyajian, N.; Lin, Z. X.; Yin, R. T.; Obaid, S. N.; Tian, J. B.; Brennan, J. A.; Chen, S. W.; Miniovich, A. N.; Lin, L. Q. et al. Flexible and transparent metal nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping. Adv. Mater. Technol. 2021, 6, 2100225.

    CAS  Article  Google Scholar 

  7. Choi, Y. S.; Yin, R. T.; Pfenniger, A.; Koo, J.; Avila, R.; Lee, K. B.; Chen, S. W.; Lee, G.; Li, G.; Qiao, Y. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228–1238.

    CAS  Article  Google Scholar 

  8. Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 2019, 14, 156–160.

    CAS  Article  Google Scholar 

  9. Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 2016, 15, 679–685.

    CAS  Article  Google Scholar 

  10. Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, T.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

    CAS  Article  Google Scholar 

  11. Gong, S.; Cheng, W. L. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314.

    Article  CAS  Google Scholar 

  12. Cheng, L.; Wang, X. W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2020, 32, 1902333.

    CAS  Article  Google Scholar 

  13. Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, L.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

    CAS  Article  Google Scholar 

  14. Cheng, E. M.; Lim, E. A.; Tan, W. H.; Mustafa, W. A.; Syed Idrus, S. Z.; Mohd Nasir, N. F.; Abdulmalek, M.; Beh, H. G.; Lee, Y. S.; Mou Yusop, S. N. A. Comparative study between wearable sensor and cuff arm blood pressure meter in measuring blood pressure and heart rate monitor using statistical approach. J. Phys.: Conf. Ser. 2020, 1529, 022082.

    Google Scholar 

  15. Song, J. K.; Do, K.; Koo, J. H.; Son, D.; Kim, D. H. Nanomaterials-based flexible and stretchable bioelectronics. MRS Bull. 2019, 44, 643–656.

    Article  CAS  Google Scholar 

  16. Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

    Article  CAS  Google Scholar 

  17. Valiev, R. Nanomaterial advantage. Nature 2002, 419, 887–889.

    CAS  Article  Google Scholar 

  18. Lee, Y.; Kim, J.; Koo, J. H.; Kim, T. H.; Kim, D. H. Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 2018, 35, 1–11.

    Article  CAS  Google Scholar 

  19. Hong, S.; Lee, S.; Kim, D. H. Materials and design strategies of stretchable electrodes for electronic skin and its applications. Proc. IEEE 2019, 107, 2185–2197.

    CAS  Article  Google Scholar 

  20. Kim, T.; Cho, M.; Yu, K. J. Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials, 2018, 11, 1163.

    Article  CAS  Google Scholar 

  21. Lee, W.; Yun, H.; Song, J. K.; Sunwoo, S. H.; Kim, D. H. Nanoscale materials and deformable device designs for bioinspired and biointegrated electronics. Acc. Mater. Res. 2021, 2, 266–281.

    CAS  Article  Google Scholar 

  22. Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

    CAS  Article  Google Scholar 

  23. Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.

    CAS  Article  Google Scholar 

  24. Yang, W. F.; Gong, W.; Hou, C. Y.; Su, Y.; Guo, Y. B.; Zhang, W.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 2019, 10, 5541.

    CAS  Article  Google Scholar 

  25. Li, D. F.; He, J. H.; Song, Z.; Yao, K. M.; Wu, M. G.; Fu, H. R.; Liu, Y. M.; Gao, Z.; Zhou, J. K.; Wei, L. et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 2021, 7, 85.

    Article  Google Scholar 

  26. Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.

    Article  CAS  Google Scholar 

  27. Park, J.; Choi, S.; Janardhan, A. H.; Lee, S. Y.; Raut, S.; Soares, J.; Shin, K.; Yang, S. H.; Lee, C.; Kang, K. W. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 2016, 8, 344ra86.

    Google Scholar 

  28. Anderson, J. M.; Miller, K. M. Biomaterial biocompatibility and the macrophage. Biomaterials 1984, 5, 5–10.

    CAS  Article  Google Scholar 

  29. Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

    CAS  Article  Google Scholar 

  30. Seo, K. J.; Qiang, Y.; Bilgin, I.; Kar, S.; Vinegoni, C.; Weissleder, R.; Fang, H. Transparent electrophysiology microelectrodes and interconnects from metal nanomesh. ACS Nano 2017, 11, 4365–4372.

    CAS  Article  Google Scholar 

  31. Hwang, S. W.; Lee, C. H.; Cheng, H.; Jeong, J. W.; Kang, S. K.; Kim, J. H.; Shin, J.; Yang, J.; Liu, Z. J.; Ameer, G. A. et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 2015, 15, 2801–2808.

    CAS  Article  Google Scholar 

  32. Sun, M. J.; Li, Z.; Yang, C. Y.; Lv, Y. J.; Yuan, L.; Shang, C. X.; Liang, S. Y.; Guo, B. W.; Liu, Y.; Li, Z. et al. Nanogenerator-based devices for biomedical applications. Nano Energy, 2021, 89, 106461.

    CAS  Article  Google Scholar 

  33. Zou, Y.; Bo, L.; Li, Z. Recent progress in human body energy harvesting for smart bioelectronic system. Fundam. Res. 2021, 1, 364–382.

    Article  Google Scholar 

  34. Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.

    Article  CAS  Google Scholar 

  35. Padrela, L.; Rodrigues, M. A.; Duarte, A.; Dias, A. M. A.; Braga, M. E. M.; de Sousa, H. C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals—A comprehensive review. Adv. Drug Deliver. Rev. 2018, 131, 22–78.

    CAS  Article  Google Scholar 

  36. Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

    CAS  Article  Google Scholar 

  37. Liu, W. C.; Fang, X.; Chen, Q. Q.; Li, Y. X.; Li, T. Reliability analysis of an integrated device of ECG, PPG and pressure pulse wave for cardiovascular disease. Microelectron. Reliab. 2018, 87, 183–187.

    Article  Google Scholar 

  38. Deng, J.; Yuk, H.; Wu, J. J.; Varela, C. E.; Chen, X. Y.; Roche, E. T.; Guo, C. F.; Zhao, X. H. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229–236.

    CAS  Article  Google Scholar 

  39. Li, H. G.; Liu, H. Z.; Sun, M. Z.; Huang, Y. A.; Xu, L. Z. 3D interfacing between soft electronic tools and complex biological tissues. Adv. Mater 2021, 33, 2004425.

    CAS  Article  Google Scholar 

  40. Kshirsagar, T.; Dickreuter, S.; Mierzejewski, M.; Burkhardt, C. J.; Chassé, T.; Fleischer, M.; Jones, P. D. Transparent graphene/PEDOT: PSS microelectrodes for electro- and optophysiology. Adv. Mater. Technol. 2019, 4, 1800318.

    Article  CAS  Google Scholar 

  41. Ricciardulli A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.

    Article  CAS  Google Scholar 

  42. Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W. F.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.

    CAS  Article  Google Scholar 

  43. Zhao, S. Y.; Li, G.; Tong, C. J.; Chen, W. J.; Wang, P. X.; Dai, J. K.; Fu, X. F.; Xu, Z.; Liu, X. J.; Lu, L. L. et al. Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes. Nat. Commun. 2020, 11, 1788.

    CAS  Article  Google Scholar 

  44. Stetsenko, M.; Margitych, T.; Kryvyi, S.; Maksimenko, L.; Hassan, A.; Filonenko, S.; Li, B. K.; Qu, J. L.; Scheer, E.; Snegir, S. Gold nanoparticle self-aggregation on surface with 1, 6-hexanedithiol functionalization. Nanomaterials 2020, 10, 512.

    CAS  Article  Google Scholar 

  45. Liu, J.; Zhang, X. Y.; Liu, Y. X.; Rodrigo, M.; Loftus, P. D.; Aparicio-Valenzuela, J.; Zheng, J. K.; Pong, T. Cyr, K. J.; Babakhanian, M. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 14769–14778.

    CAS  Article  Google Scholar 

  46. Narayan, S. M.; Shivkumar, K.; Krummen, D. E.; Miller, J. M.; Rappel, W. J. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: Stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ. Arrhythm. Electrophysiol. 2013, 6, 58–67.

    Article  Google Scholar 

  47. Bradley, C. J.; Haines, D. E. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 2136–3147.

    Article  Google Scholar 

  48. Haïssaguerre, M.; Sanders, P.; Hocini, M.; Takahashi, Y.; Rotter, M.; Sacher, F.; Rostock, T.; Hsu, L. F.; Bordachar, P.; Reuter, S. et al. Catheter ablation of long-lasting persistent atrial fibrillation: Critical structures for termination. J. Cardiovasc. Electrophysiol. 2005, 16, 1125–1137.

    Article  Google Scholar 

  49. Li, J.; Kang, L.; Yu, Y. H.; Long, Y.; Jeffery, J. J.; Cai, W. B.; Wang, X. D. Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 2018, 51, 728–735.

    CAS  Article  Google Scholar 

  50. Galassi, T. V.; Antman-Passig, M.; Yaari, Z.; Jessurun, J.; Schwartz, R. E.; Heller, D. A. Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 2020, 15, e0226791.

    CAS  Article  Google Scholar 

  51. Lin, W. C.; Yao, C. M.; Huang, T. Y.; Cheng, S. J.; Tang, C. M. Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent. Mater. 2019, 35, 751–762.

    CAS  Article  Google Scholar 

  52. Ouyang, H.; Li, Z.; Gu, M.; Hu, Y. R.; Xu, L. L.; Jiang, D. J.; Cheng, S. J.; Zou, Y.; Deng, Y.; Shi, B. J. et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care. Adv. Mater. 2021, 33, 2102302.

    CAS  Article  Google Scholar 

  53. Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

    Google Scholar 

  54. Sempionatto, J. R.; Moon, J. M.; Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: Personalized data processing for predicting blood glucose concentrations. ACS Sens. 2021, 6, 1875–1883.

    CAS  Article  Google Scholar 

  55. Fuchs, F. D.; Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292.

    CAS  Article  Google Scholar 

  56. Yoo, S.; Baek, H.; Doh, K.; Jeong, J.; Ahn, S.; Oh, I. Y.; Kim, K. Validation of the mobile wireless digital automatic blood pressure monitor using the cuff pressure oscillometric method, for clinical use and self-management, according to international protocols. Biomed. Eng. Lett. 2018, 8, 399–404.

    Article  Google Scholar 

  57. Cox, D. J.; Fang, K.; McCall, A. L.; Conaway, M. R.; Banton, T. A.; Moncrief, M. A.; Diamond, A. M.; Taylor, A. G. Behavioral strategies to lower postprandial glucose in those with type 2 diabetes may also lower risk of coronary heart disease. Diabetes Ther. 2019, 10, 277–281.

    CAS  Article  Google Scholar 

  58. Bandodkar, A. J.; Jia, W. Z.; Yardımcı, C.; Wang, X.; Ramirez, J.; Wang, J. Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Anal. Chem. 2015, 87, 394–398.

    CAS  Article  Google Scholar 

  59. Chen, Y. H.; Lu, S. Y.; Zhang, S. S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B. W.; Wang, X. Y.; Feng, X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 2017, 3, e1701629.

    Article  Google Scholar 

  60. Pu, Z. H.; Zhang, X. G.; Yu, H. X.; Tu, J. A.; Chen, H. L.; Liu, Y. C.; Su, X.; Wang, R. D.; Zhang, L.; Li, D. C. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 2021, 1, eabd0199.

    Article  CAS  Google Scholar 

  61. Duchateau, J.; Sacher, F.; Pambrun, T.; Derval, N.; Chamorro-Servent, J.; Denis, A.; Ploux, S.; Hocini, M.; Jaïs, P.; Bernus, O. et al. Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm 2019, 16, 435–442.

    Article  Google Scholar 

  62. Koo, J. H.; Song, J. K.; Kim, D. H.; Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 2021, 3, 1528–1540.

    CAS  Article  Google Scholar 

  63. Kim, D. H.; Ghaffari, R.; Lu, N. S.; Wang, S. D.; Lee, S. P.; Keum, H.; D’Angelo, R.; Klinker, L.; Su, Y. W.; Lu, C. F. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. USA 2012, 109, 19910–19915.

    CAS  Article  Google Scholar 

  64. Koh, A.; Gutbrod, S. R.; Meyers, J. D.; Lu, C. F.; Webb, R. C.; Shin, G.; Li, Y. H.; Kang, S. K.; Huang, Y. G.; Efimov, I. R. et al. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Adv. Healthc. Mater. 2016, 5, 373–381.

    CAS  Article  Google Scholar 

  65. Mackman, N.; Bergmeier, W.; Stouffer, G. A.; Weitz, J. I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov. 2020, 19, 333–352.

    CAS  Article  Google Scholar 

  66. Wolberg, A. S.; Rosendaal, F. R.; Weitz, J. I.; Jaffer, I. H.; Agnelli, G.; Baglin, T.; Mackman, N. Venous thrombosis. Nat. Rev. Dis. Primers 2015, 1, 15006.

    Article  Google Scholar 

  67. Li, T.; Feng, Z. Q.; Qu, M. H.; Yan, K.; Yuan, T.; Gao, B. B.; Wang, T.; Dong, W.; Zheng, J. Core/shell piezoelectric nanofibers with spatial self-orientated ß-phase nanocrystals for real-time micropressure monitoring of cardiovascular walls. ACS Nano 2019, 13, 10062–10073.

    CAS  Article  Google Scholar 

  68. Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-poweeed wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.

    CAS  Article  Google Scholar 

  69. Liu, Z.; Ma, Y.; Ouyang, H.; Shi, B. J.; Li, N.; Jiang, D. J.; Xie, F.; Qu, D.; Zou, Y.; Huang, Y. et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv. Funct. Mater. 2019, 29, 1807560.

    Article  CAS  Google Scholar 

  70. Cohn, J. N.; El Shahawy, M. Monitoring cardiovascular disease progression. Open J. Cardiol. Heart Dis. 2019, 3, OJCHD. 000552.2019.

    Google Scholar 

  71. Sharma, P. A.; Maheshwari, R.; Tekade, M.; Tekade, R. K. Nanomaterial based approaches for the diagnosis and therapy of cardiovascular diseases. Curr. Pharm. Des. 2015, 21, 4465–4478.

    CAS  Article  Google Scholar 

  72. Chu, K. F.; Dupuy, D. E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208.

    CAS  Article  Google Scholar 

  73. Sim, K.; Ershad, F.; Zhang, Y. C.; Yang, P. Y.; Shim, H.; Rao, Z.; Lu, Y. T.; Thukral, A.; Elgalad, A.; Xi, Y. T. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 2020, 3, 775–784.

    CAS  Article  Google Scholar 

  74. Schneider, O.; Moruzzi, A.; Fuchs, S.; Grobel, A.; Schulze, H. S.; Mayr, T.; Loskill, P. Fusing spheroids to aligned µ-tissues in a heart-on-chip featuring oxygen sensing and electrical pacing capabilities. Mater. Today Bio 2022, 15, 100280.

    CAS  Article  Google Scholar 

  75. Keum, D. H.; Mun, J. H.; Hwang, B. W.; Kim, J.; Kim, H.; Jo, W.; Ha, D. H.; Cho, D. W.; Kim, C.; Hahn, S. K. Smart microbubble eluting theranostic stent for noninvasive ultrasound imaging and prevention of restenosis. Small 2017, 13, 1602925.

    Article  CAS  Google Scholar 

  76. Niccoli, G.; Montone, R. A.; Ferrante, G.; Crea, F. The evolving role of inflammatory biomarkers in risk assessment after stent implantation. J. Am. Coll. Cardiol. 2010, 56, 1783–1793.

    Article  Google Scholar 

  77. Jukema, J. W.; Verschuren, J. J. W.; Ahmed, T. A. N.; Quax, P. H. A. Restenosis after PCI. Part 1: Pathophysiology and risk factors. Nat. Rev. Cardiol. 2012, 9, 53–62.

    CAS  Article  Google Scholar 

  78. Van Lith, R.; Baker, E.; Ware, H.; Yang, J.; Farsheed, A. C.; Sun, C.; Ameer, G. 3D - printing strong high - resolution antioxidant bioresorbable vascular stents. Adv. Mater. Technol. 2016, 1, 1600138.

    Article  CAS  Google Scholar 

  79. Mizuno, A.; Changolkar, S.; Patel, M. S. Wearable devices to monitor and reduce the risk of cardiovascular disease: Evidence and opportunities. Annu. Rev. Med. 2021, 72, 459–471.

    CAS  Article  Google Scholar 

  80. Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448.

    CAS  Article  Google Scholar 

  81. Morales, D. L. S.; Khan, M. S.; Gottlieb, E. A.; Krishnamurthy, R.; Dreyer, W. J.; Adachi, I. Implantation of total artificial heart in congenital heart disease. Semin. Thorac. Cardiov. 2012, 24, 142–143.

    Article  Google Scholar 

  82. Roberts, P. A.; Boudjemline, Y.; Cheatham, J. P.; Eicken, A.; Ewert, P.; McElhinney, D. B.; Hill, S. L.; Berger, F.; Khan, D.; Schranz, D. et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J. Am. Coll. Cardiol. 2011, 58, 117–122.

    Article  Google Scholar 

  83. Ardehali, A.; Esmailian, F.; Deng, M.; Soltesz, E.; Hsich, E.; Naka, Y.; Mancini, D.; Camacho, M.; Zucker, M.; Leprince, P. et al. Exvivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 2015, 385, 2577–2584.

    Article  Google Scholar 

  84. Paloschi, V.; Sabater-Lleal, M.; Middelkamp, H.; Vivas, A.; Johansson, S.; van der Meer, A.; Tenje, M.; Maegdefessel, L. Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases. Cardiovasc. Res. 2021, 117, 2742–2754.

    CAS  Article  Google Scholar 

  85. Starr, A.; Fessler, C. L.; Grunkemeier, G.; He, G. W. Heart valve replacement surgery: Past, present and future. Clin. Exp. Pharmacol. Physiol. 2002, 29, 735–738.

    CAS  Article  Google Scholar 

  86. Kosaraju, A.; Goyal, A.; Grigorova, Y.; Makaryus, A. N. Left ventricular ejection fraction; StatPearls Publishing: Treasure Island, FL, USA; 2022. https://www.ncbi.nlm.nih.gov/books/NBK459131/ (accessed Mar 20, 2022).

    Google Scholar 

  87. Mehmel, H. C.; Stockins, B.; Ruffmann, K.; von Olshausen, K.; Schuler, G.; Kübler, W. The linearity of the end-systolic pressure-volume relationship in man and its sensitivity for assessment of left ventricular function. Circulation 1981, 63, 1216–1222.

    CAS  Article  Google Scholar 

  88. Ross, J. Jr. Transseptal left heart catheterization: A 50-year odyssey. J. Am. Coll. Cardiol. 2008, 51, 2107–2115.

    Article  Google Scholar 

  89. Dagdeviren, C.; Shi, Y.; Joe, P.; Ghaffari, R.; Balooch, G.; Usgaonkar, K.; Gur, O.; Tran, P. L.; Crosby, J. R.; Meyer, M. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 2015, 14, 728–736.

    CAS  Article  Google Scholar 

  90. Yang, W. Y.; Gong, Y.; Yao, C.-Y.; Shrestha, M.; Jia, Y. Y.; Qiu, Z.; Fan, Q. H.; Weber, A.; Li, W. A fully transparent, flexible PEDOT: PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. Lab Chip 2021, 21, 1096–1108.

    CAS  Article  Google Scholar 

  91. Liao, C. Z.; Li, Y. C.; Tjong, S. C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564.

    Article  CAS  Google Scholar 

  92. Yang, Q. Q.; Wei, T.; Yin, R. T.; Wu, M. Z.; Xu, Y. M.; Koo, J.; Choi, Y. S.; Xie, Z. Q.; Chen, S. W.; Kandela, I. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 2021, 20, 1559–1570.

    CAS  Article  Google Scholar 

  93. Dreifus, L. S.; Watanabe, Y.; Haiat, R.; Kimbiris, D. Atrioventricular block. Am. J. Cardiol. 1971, 28, 371–380.

    CAS  Article  Google Scholar 

  94. Gutruf, P.; Yin, R. T.; Lee, K. B.; Ausra, J.; Brennan, J. A.; Qiao, Y.; Xie, Z. Q.; Peralta, R.; Talarico, O.; Murillo, A. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742.

    CAS  Article  Google Scholar 

  95. Del Nido, P.; Goldman, B. S. Temporary epicardial pacing after open heart surgery: Complications and prevention. J. Card. Surg. 1989, 4, 99–103.

    CAS  Article  Google Scholar 

  96. Elmistekawy, E. Safety of temporary pacemaker wires. Asian Cardiovasc. Thorac. Ann. 2019, 27, 341–346.

    Article  Google Scholar 

  97. Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing - driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.

    CAS  Article  Google Scholar 

  98. Huang, S. T.; Dong, J. Z.; Du, X.; Wu, J. H.; Yu, R. H.; Long, D. Y.; Ning, M.; Sang, C. H.; Jiang, C. X.; Bai, R. et al. Relationship between ablation lesion size estimated by ablation index and different ablation settings—An ex vivo porcine heart study. J. Cardiovasc. Transl. 2020, 13, 965–969.

    Article  Google Scholar 

  99. Jaworek, M.; Gelpi, G.; Romagnoni, C.; Lucherini, F.; Contino, M.; Fiore, G. B.; Vismara, R.; Antona, C. Long-arm clip for transcatheter edge-to-edge treatment of mitral and tricuspid regurgitation—Ex-vivo beating heart study. Struct. Heart 2019, 3, 211–219.

    Article  Google Scholar 

  100. Zuppinger, C. 3D cardiac cell culture: A critical review of current technologies and applications. Front. Cardiovasc. Med. 2019, 6, 87.

    CAS  Article  Google Scholar 

  101. Sander, V.; Suñe, G.; Jopling, C.; Morera, C.; Belmonte, J. C. I. Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts. Nat. Protoc. 2013, 8, 800–809.

    Article  CAS  Google Scholar 

  102. Das, M.; Molnar, P.; Gregory, C.; Riedel, L.; Jamshidi, A.; Hickman, J. J. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 2004, 25, 5643–5647.

    CAS  Article  Google Scholar 

  103. Jimbo, Y.; Sasaki, D.; Ohya, T.; Lee, S.; Lee, W.; Hassani, F. A.; Yokota, T.; Matsuura, K.; Umezu, S.; Shimizu, T. et al. An organic transistor matrix for multipoint intracellular action potential recording. Proc. Natl. Acad. Sci. USA 2021, 118, e2022300118.

    CAS  Article  Google Scholar 

  104. Dipalo, M.; Rastogi, S. K.; Matino, L.; Garg, R.; Bliley, J.; Iachetta, G.; Melle, G.; Shrestha, R.; Shen, S.; Santoro, F. et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. Sci. Adv. 2021, 7, eabd5175.

    CAS  Article  Google Scholar 

  105. Abbott, J.; Ye, T. Y.; Qin, L.; Jorgolli, M.; Gertner, R. S.; Ham, D.; Park, H. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 2017, 12, 460–466.

    CAS  Article  Google Scholar 

  106. Bers, D. M.; Barry, W. H.; Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res. 2003, 57, 897–912.

    CAS  Article  Google Scholar 

  107. Brown, A. M.; Lee, K. S.; Powell, T. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 1981, 318, 455–477.

    CAS  Article  Google Scholar 

  108. Gouwens, N. W.; Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 2009, 29, 6239–6249.

    CAS  Article  Google Scholar 

  109. Gu, Y.; Wang, C. F.; Kim, N.; Zhang, J. X.; Wang, T. M.; Stowe, J.; Nasiri, R.; Li, J. F.; Zhang, D. B.; Yang, A. et al. Three-dimensional transistor arrays for intra-and inter-cellular recording. Nat. Nanotechnol. 2022, 17, 292–300.

    CAS  Article  Google Scholar 

  110. Liu, Y. L.; Huang, W. H. Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem., Int. Edit. 2021, 60, 2757–2767.

    CAS  Article  Google Scholar 

  111. Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.

    CAS  Article  Google Scholar 

  112. Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. Highperformance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

    CAS  Article  Google Scholar 

  113. Feiner, R.; Fleischer, S.; Shapira, A.; Kalish, O.; Dvir, T. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J. Control. Release 2018, 281, 189–195.

    CAS  Article  Google Scholar 

  114. Griffith, L. G.; Naughton, G. Tissue engineering-current challenges and expanding opportunities. Science 2002, 295, 1009–1014.

    CAS  Article  Google Scholar 

  115. Dai, X. C.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 2016, 11, 776–782.

    CAS  Article  Google Scholar 

  116. Yu, S. Y.; Huang, S.; Ding, Y. S.; Wang, W.; Wang, A. Y.; Lu, Y. Transient receptor potential ion-channel subfamily V member 4: A potential target for cancer treatment. Cell Death Dis. 2019, 10, 497.

    Article  Google Scholar 

  117. Schanze, N.; Bode, C.; Duerschmied, D. Platelet contributions to myocardial ischemia/reperfusion injury. Front. Immunol. 2019, 10, 1260.

    CAS  Article  Google Scholar 

  118. Saha, P.; Sharma, S.; Korutla, L.; Datla, S. R.; Shoja-Taheri, F.; Mishra, R.; Bigham, G. E.; Sarkar, M.; Morales, D.; Bittle G. et al. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci. Transl. Med. 2019, 11, eaau1168.

    CAS  Article  Google Scholar 

  119. Huang, C.; Grobert, N.; Watt, A. A. R.; Johnston, C.; Crossley, A.; Young, N. P.; Grant, P. S. Layer-by-layer spray deposition and unzipping of single-wall carbon nanotube-based thin film electrodes for electrochemical capacitors. Carbon 2013, 61, 525–536.

    CAS  Article  Google Scholar 

  120. Prevoteau, A.; Soulié-Ziakovic, C.; Leibler, L. Universally dispersible carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 19961–19964.

    CAS  Article  Google Scholar 

  121. Fang, H.; Yu, K. J.; Gloschat, C.; Yang, Z. J.; Song, E. M.; Chiang, C. H.; Zhao, J. N.; Won, S. M.; Xu, S. Y.; Trumpis, M. et al. Erratum: Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 2017, 1, 0055.

    Article  Google Scholar 

  122. Song, E. M.; Li, J. H.; Won, S. M.; Bai, W. B.; Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603.

    CAS  Article  Google Scholar 

  123. Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62104009) and the National Key Research and Development Program of China (No. 2018YFA0108100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Han, M. & Zhang, H. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res. (2022). https://doi.org/10.1007/s12274-022-4551-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-022-4551-8

Keywords

  • cardiovascular diseases (CVDs)
  • monitoring
  • treatment
  • nanomaterials
  • flexible devices