Skip to main content
Log in

Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hydrogen (H) spillover in nonreducible oxides such as zeolites and Al2O3 has been a highly controversial phenomenon in heterogeneous catalysis. Since industrial catalysts are predominantly prepared using these materials as supports, it is important to understand the mechanism and catalytic functions of H spillover on their surfaces. In the past decade, fundamental studies on zeolite-encapsulated metal catalysts have revealed that H spillover and reverse spillover can be utilized in the design of hydrogenation and dehydrogenation catalysts with improved properties. Both experimental and theoretical studies have indicated that H spillover can occur in nonreducible oxides when they possess substantial acid sites that aid the surface migration of active H. In the present review, we will discuss the possible mechanisms of H spillover in nonreducible oxides and the unique opportunities of using this phenomenon for the design of advanced hydroprocessing catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conner, W. C. Jr.; Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 1995, 95, 759–788.

    Article  CAS  Google Scholar 

  2. Roland, U.; Braunschweig, T.; Roessner, F. On the nature of spilt-over hydrogen. J. Mol. Catal. A Chem. 1997, 127, 61–84.

    Article  CAS  Google Scholar 

  3. Prins, R. Hydrogen spillover. Facts and fiction. Chem. Rev. 2012, 112, 2714–2738.

    Article  CAS  Google Scholar 

  4. Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; VandeVondele, J.; Ekinci, Y.; Van Bokhoven, J. A. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68–71.

    Article  CAS  Google Scholar 

  5. Kuriacose, J. Ind. J. Chem. 1957, 5, 646.

    Google Scholar 

  6. Taylor, H. Surface catalysis. Annu. Rev. Phys. Chem. 1961, 12, 127–150.

    Article  CAS  Google Scholar 

  7. Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum—Alumina catalysts from particle to neighboring particles. J. Phys. Chem. 1964, 68, 411–412.

    Article  CAS  Google Scholar 

  8. Benson, J. E.; Kohn, H. W.; Boudart, M. On the reduction of tungsten trioxide accelerated by platinum and water. J. Catal. 1966, 5, 307–313.

    Article  CAS  Google Scholar 

  9. Levy, R. B.; Boudart, M. The kinetics and mechanism of spillover. J. Catal. 1974, 32, 304–314.

    Article  CAS  Google Scholar 

  10. Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95, 559–614.

    Article  CAS  Google Scholar 

  11. Weisz, P. B.; Swegler, E. W. Stepwise reaction on separate catalytic centers: Isomerization of saturated hydrocarbons. Science 1957, 126, 31–32.

    Article  CAS  Google Scholar 

  12. Triwahyono, S.; Jalil, A. A.; Timmiati, S. N.; Ruslan, N. N.; Hattori, H. Kinetics study of hydrogen adsorption over Pt/MoO3. Appl. Catal. A Gen. 2010, 372, 103–107.

    Article  CAS  Google Scholar 

  13. Huizinga, T.; Prins, R. Behavior of titanium (3+) centers in the low-and high-temperature reduction of platinum/titanium dioxide, studied by ESR. J. Phys. Chem. 1981, 85, 2156–2158.

    Article  CAS  Google Scholar 

  14. Karna, S. P.; Pugh, R. D.; Shedd, W. M.; Singaraju, B. B. K. Interaction of H+/H0 with O atoms in thin SiO2 films: A first-principles quantum mechanical study. J. Non-Cryst. Solids 1999, 254, 66–73.

    Article  CAS  Google Scholar 

  15. Prins, R.; Palfi, V. K.; Reiher, M. Hydrogen spillover to nonreducible supports. J. Phys. Chem. C 2012, 116, 14274–14283.

    Article  CAS  Google Scholar 

  16. Ahmed, F.; Alam, M. K.; Suzuki, A.; Koyama, M.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Del Carpio, C. A.; Kubo, M. et al. Dynamics of hydrogen spillover on Pt/γ-Al2O3 catalyst surface: A quantum chemical molecular dynamics study. J. Phys. Chem. C 2009, 113, 15676–15683.

    Article  CAS  Google Scholar 

  17. Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V. Migration mechanism for atomic hydrogen in porous carbon materials. Appl. Phys. Lett. 2012, 100, 203901.

    Article  Google Scholar 

  18. Psofogiannakis, G. M.; Froudakis, G. E. DFT study of hydrogen storage by spillover on graphite with oxygen surface groups. J. Am. Chem. Soc. 2009, 131, 15133–15135.

    Article  CAS  Google Scholar 

  19. Yang, F. H.; Lachawiec, A. J.; Yang, R. T. Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B 2006, 110, 6236–6244.

    Article  CAS  Google Scholar 

  20. Sha, X. W.; Knippenberg, M. T.; Cooper, A. C.; Pez, G. P.; Cheng, H. S. Dynamics of hydrogen spillover on carbon-based materials. J. Phys. Chem. C 2008, 112, 17465–17470.

    Article  CAS  Google Scholar 

  21. Han, S. S.; Kim, H.; Park, N. Effect of shuttling catalyst on the migration of hydrogen adatoms: A strategy for the facile hydrogenation of graphene. J. Phys. Chem. C 2011, 115, 24696–24701.

    Article  CAS  Google Scholar 

  22. Roessner, F.; Roland, U. Hydrogen spillover in bifunctional catalysis. J. Mol. Catal. A Chem. 1996, 112, 401–412.

    Article  CAS  Google Scholar 

  23. Carter, J. L.; Lucchesi, P. J.; Corneil, P.; Yates, D. J. C.; Sinfelt, J. H. Exchange of deuterium with the hydroxyl groups of alumina. J. Phys. Chem. 1965, 69, 3070–3074.

    Article  CAS  Google Scholar 

  24. Cavanagh, R. R.; Yates, J. T. Jr. Hydrogen spillover on alumina—A study by infrared spectroscopy. J. Catal. 1981, 68, 22–26.

    Article  CAS  Google Scholar 

  25. Dmitriev, R. V.; Detjuk, A. N.; Minachev, C. M.; Steinberg, K. H. Investigation of hydrogen spillover on metal containing catalysts by isotopic exchange. Stud. Surf. Sci. Catal. 1983, 17, 17–29.

    Article  CAS  Google Scholar 

  26. Salzer, R.; Dressler, J.; Steinberg, K. H.; Roland, U.; Winkler, H.; Klaeboe, P. Fourier transform infrared (DRIFT) investigation of glass-covered samples. Study of hydrogen spillover on zeolites. Vib. Spectrosc. 1991, 1, 363–369.

    Article  CAS  Google Scholar 

  27. Sheng, T. C.; Gay, I. D. Proton magnetic resonance of hydrogen adsorbed on supported platinum catalysts. J. Catal. 1981, 71, 119–126.

    Article  CAS  Google Scholar 

  28. Sheng, T. C.; Gay, I. D. Proton resonance of hydrogen adsorbed on supported platinum metals. J. Catal. 1982, 77, 53–56.

    Article  CAS  Google Scholar 

  29. Xiong, M.; Gao, Z.; Zhao, P.; Wang, G. F.; Yan, W. J.; Xing, S. F.; Wang, P. F.; Ma, J. Y.; Jiang, Z.; Liu, X. C. et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 2020, 11, 4773.

    Article  CAS  Google Scholar 

  30. Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

    Article  CAS  Google Scholar 

  31. Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J. B.; Tian, H.; Yang, C. S.; Li, M. R.; Fu, Q.; Mu, R. T.; Gong, J. L. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem., Int. Ed. 2019, 58, 7668–7672.

    Article  CAS  Google Scholar 

  32. Baumgarten, E.; Wagner, R.; Lentes-Wagner, C. Reactivity of spillover hydrogen: Reactivity of unsaturated compounds. J. Catal. 1987, 104, 307–311.

    Article  CAS  Google Scholar 

  33. Miller, J. T.; Pei, S. Y. Hydrogenation and deuterium exchange by spillover hydrogen of ethylbenzene adsorbed on H-USY zeolite. Appl. Catal. A Gen. 1998, 168, 1–7.

    Article  CAS  Google Scholar 

  34. Choi, M.; Wu, Z. J.; Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 2010, 132, 9129–9137.

    Article  CAS  Google Scholar 

  35. Ohgoshi, S.; Nakamura, I.; Wakushima, Y. Hydrogenation of isobutylene by spiltover hydrogen from Pt/KA-zeolite to NaY-zeolite. Stud. Surf. Sci. Catal. 1993, 77, 289–292.

    Article  CAS  Google Scholar 

  36. Yang, H.; Chen, H.; Chen, J.; Omotoso, O.; Ring, Z. Shape selective and hydrogen spillover approach in the design of sulfur-tolerant hydrogenation catalysts. J. Catal. 2006, 243, 36–42.

    Article  CAS  Google Scholar 

  37. Breck, D. W. Zeolite molecular sieves: Structure, chemistry and use; Wiley: New York, 1974.

    Google Scholar 

  38. Vayssilov, G. N.; Gates, B. C.; Rösch, N. Oxidation of supported rhodium clusters by support hydroxy groups. Angew. Chem., Int. Ed. 2003, 42, 1391–1394.

    Article  CAS  Google Scholar 

  39. Vayssilov, G. N.; Rösch, N. Reverse hydrogen spillover in supported subnanosize clusters of the metals of groups 8 to 11. A computational model study. Phys. Chem. Chem. Phys. 2005, 7, 4019–4026.

    Article  CAS  Google Scholar 

  40. Shor, E. A. I.; Nasluzov, V. A.; Shor, A. M.; Vayssilov, G. N.; Rösch, N. Reverse hydrogen spillover onto zeolite-supported metal clusters: An embedded cluster density functional study of models M6 (M = Rh, Ir, or Au). J. Phys. Chem. C 2007, 111, 12340–12351.

    Article  CAS  Google Scholar 

  41. Nash, M. J.; Shough, A. M.; Fickel, D. W.; Doren, D. J.; Lobo, R. F. High-temperature dehydrogenation of Brønsted acid sites in zeolites. J. Am. Chem. Soc. 2008, 130, 2460–2462.

    Article  CAS  Google Scholar 

  42. Im, J.; Shin, H.; Jang, H.; Kim, H.; Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 2014, 5, 3370.

    Article  Google Scholar 

  43. Hosokawa, H.; Oki, K. Synthesis of nanosized A-type zeolites from sodium silicates and sodium aluminates in the presence of a crystallization inhibitor. Chem. Lett. 2003, 32, 586–587.

    Article  CAS  Google Scholar 

  44. Somorjai, G. A.; Carrazza, J. Structure sensitivity of catalytic reactions. Ind. Eng. Chem. Fund. 1986, 25, 63–69.

    Article  CAS  Google Scholar 

  45. Bricker, J. C. Advanced catalytic dehydrogenation technologies for production of olefins. Top. Catal. 2012, 55, 1309–1314.

    Article  CAS  Google Scholar 

  46. Lee, S.; Lee, K.; Im, J.; Kim, H.; Choi, M. Revisiting hydrogen spillover in Pt/LTA: Effects of physical diluents having different acid site distributions. J. Catal. 2015, 325, 26–34.

    Article  CAS  Google Scholar 

  47. Wang, Z.; Yang, F. H.; Yang, R. T. Enhanced hydrogen spillover on carbon surfaces modified by oxygen plasma. J. Phys. Chem. C 2010, 114, 1601–1609.

    Article  CAS  Google Scholar 

  48. Mikhailov, M. N.; Mishin, I. V.; Kustov, L. M. A possible mechanism of hydrogen reverse spillover in platinum-zeolite catalysts. Catal. Lett. 2009, 128, 313–317.

    Article  CAS  Google Scholar 

  49. Shin, H.; Choi, M.; Kim, H. A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst. Phys. Chem. Chem. Phys. 2016, 18, 7035–7041.

    Article  CAS  Google Scholar 

  50. Sattler, J. J. H. B.; Gonzalez-Jimenez, I. D.; Luo, L.; Stears, B. A.; Malek, A.; Barton, D. G.; Kilos, B. A.; Kaminsky, M. P.; Verhoeven, T. W. G. M.; Koers, E. J. et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew. Chem., Int. Ed. 2014, 53, 9251–9256.

    Article  CAS  Google Scholar 

  51. Im, J.; Choi, M. Physicochemical stabilization of Pt against sintering for a dehydrogenation catalyst with high activity, selectivity, and durability. ACS Catal. 2016, 6, 2819–2826.

    Article  CAS  Google Scholar 

  52. Kwon, H. C.; Park, Y.; Park, J. Y.; Ryoo, R.; Shin, H.; Choi, M. Catalytic interplay of Ga, Pt, and Ce on the alumina surface enabling high activity, selectivity, and stability in propane dehydrogenation. ACS Catal. 2021, 11, 10767–10777.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (No. NRF-2020R1A2C3003694) and the KAIST Cross-Generation Collaborative Lab Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minkee Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, H., Ryoo, R. et al. Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Res. 15, 10357–10365 (2022). https://doi.org/10.1007/s12274-022-4546-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4546-5

Keywords

Navigation