Skip to main content
Log in

Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) with abundant accessible active sites are promising electrode materials for hybrid supercapacitor (HSC) due to their ultrahigh theoretical capacitances. However, the structural agglomeration of LDH leads to poor rate capability and durability. Herein, we construct a diffusion-controlled interface in hierarchical architecture of metal-organic framework (MOF) HKUST-1@cobalt-nickel LDH (denoted as HKUST-1@CoNiLDH) through an in situ etching/electro-deposition strategy. The rapid charge transfer and ionic diffusion in HKUST-1@CoNiLDH deliver a remarkable specific capacity of 297.23 mAh·g−1 at 1 A·g−1, superior to mostly reported LDH-based electrodes. More importantly, the as-prepared HKUST-1 @CoNiLDH//activated carbon HSC exhibit a high energy density of 39.8 Wh·kg−1 at a power density of 799.9 W·kg−1 with an outstanding capacitance retention of 90% after 5,000 charge—discharge cycles. The in-depth understanding of the ionic diffusion among the MOF/LDH interfaces will greatly promote the further development of designing and synthesizing high performance energy conversion and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, W. Y.; Wei, T. T.; Mo, L. E.; Wu, S. G.; Li, Z. Q.; Chen, S. H.; Zhang, X. X.; Hu, L. H. CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem. Eng. J. 2020, 400, 125856.

    Article  CAS  Google Scholar 

  2. Yang, W. H.; Guo, H.; Yue, L. G.; Li, Q.; Xu, M. N.; Zhang, L. W.; Fan, T.; Yang, W. Metal-organic frameworks derived MMoSx (M = Ni, Co and Ni/Co) composites as electrode materials for supercapacitor. J. Alloys Compd. 2020, 834, 154118.

    Article  CAS  Google Scholar 

  3. Han, X. R.; Chen, Q.; Zhang, H.; Ni, Y. H.; Zhang, L. Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 368, 513–524.

    Article  CAS  Google Scholar 

  4. Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, H. B.; Wang, F.; Zhang, J. Highly efficient electrocatalysts for overall water splitting: Mesoporous CoS/MoS2 with hetero-interfaces. Chem. Commun. (Camb.) 2021, 57, 4847–4850.

    Article  CAS  Google Scholar 

  5. Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, X. X.; Wang, H. H.; Wang, H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithiumion batteries. Mater. Chem. Front. 2021, 5, 3593–3613.

    Article  CAS  Google Scholar 

  6. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sust. Energy Rev. 2016, 58, 1189–1206.

    Article  Google Scholar 

  7. Lv, Z. S.; Tang, Y. F.; Tang, Y. X.; Wei, J. Q.; Zhou, X. R.; Li, W. L.; Zeng, Y.; Zhang, W.; Zhang, Y. Y.; Qi, D. P. et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531.

    Article  Google Scholar 

  8. Ran, F. T.; Yang, X. B.; Xu, X. Q.; Li, S. W.; Liu, Y. Y.; Shao, L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards highperformance supercapacitor. Chem. Eng. J. 2021, 412, 128673.

    Article  CAS  Google Scholar 

  9. Yu, F.; Pang, L.; Wang, H. X. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2020, 40, 440–447.

    Article  Google Scholar 

  10. Liang, X. T.; Chen, K. F.; Xue, D. F. A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 2018, 8, 1703329.

    Article  Google Scholar 

  11. Liu, P. B.; Yan, J.; Guang, Z. X.; Huang, Y.; Li, X. F.; Huang, W. H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130.

    Article  CAS  Google Scholar 

  12. Pothu, R.; Bolagam, R.; Wang, Q. H.; Ni, W.; Cai, J. F.; Peng, X. X.; Feng, Y. Z.; Ma, J. M. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2020, 40, 353–373.

    Article  Google Scholar 

  13. Liu, L.; Yan, Y.; Cai, Z. H.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for highperformance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.

    Article  Google Scholar 

  14. Du, Y. Q.; Li, G. Y.; Chen, M. D.; Yang, X. H.; Ye, L.; Liu, X.; Zhao, L. J. Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chem. Eng. J. 2019, 378, 122210.

    Article  CAS  Google Scholar 

  15. Guo, D. X.; Song, X. M.; Tan, L. C.; Ma, H. Y.; Sun, W. F.; Pang, H. J.; Zhang, L. L.; Wang, X. M. A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance. Chem. Eng. J. 2019, 356, 955–963.

    Article  CAS  Google Scholar 

  16. Li, Q. H.; Lu, W.; Li, Z. P.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544.

    Article  CAS  Google Scholar 

  17. Lu, W.; Yang, M.; Jiang, X.; Yu, Y.; Liu, X. C.; Xing, Y. Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chem. Eng. J. 2020, 382, 122943.

    Article  CAS  Google Scholar 

  18. McManus, J. B.; Ilhan, C.; Balsamo, B.; Downing, C.; Cullen, C. P.; Stimpel-Lindner, T.; Cunningham, G.; Peters, L.; Jones, L.; Mullarkey, D. et al. Synthesis of tungsten ditelluride thin films and highly crystalline nanobelts from pre-deposited reactants. Tungsten 2020, 2, 321–334.

    Article  Google Scholar 

  19. Ojha, M.; Wu, B.; Deepa, M. Cost-effective MIL-53(Cr) metal-organic framework-based supercapacitors encompassing fast-ion (Li+/H+/Na+) conductors. ACS Appl. Energy Mater. 2021, 4, 4729–4743.

    Article  CAS  Google Scholar 

  20. Jayaramulu, K.; Dubal, D. P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K. K. R.; Zboril, R.; Gómez-Romero, P.; Fischer, R. A. Ultrathin hierarchical porous carbon nanosheets for highperformance supercapacitors and redox electrolyte energy storage. Adv. Mater. 2018, 30, e1705789.

    Article  Google Scholar 

  21. Tang, J. J.; Shen, Y. N.; Miao, X. L.; Qin, H.; Song, D. D.; Li, Y. T.; Qu, Y. N.; Yin, Z.; Ren, J. H.; Wang, L. L. et al. Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode. J. Electroanal. Chem. 2019, 840, 174–181.

    Article  CAS  Google Scholar 

  22. Zheng, W. W.; Sun, S. G.; Xu, Y. Q.; Yu, R. J.; Li, H. J. Sulfidation of hierarchical NiAl-LDH/Ni-MOF composite for high-performance supercapacitor. ChemElectroChem 2019, 6, 3375–3382.

    Article  CAS  Google Scholar 

  23. Chu, D. W.; Li, F. B.; Song, X. M.; Ma, H. Y.; Tan, L. C.; Pang, H. J.; Wang, X. M.; Guo, D. X.; Xiao, B. X. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130–138.

    Article  CAS  Google Scholar 

  24. Han, B.; Cheng, G.; Zhang, E. Y.; Zhang, L. J.; Wang, X. K. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta 2018, 263, 391–399.

    Article  CAS  Google Scholar 

  25. Yu, J. F.; Wang, Q.; O’Hare, D.; Sun, L. Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974.

    Article  CAS  Google Scholar 

  26. Lei, W.; Xiao, J. L.; Liu, H. P.; Jia, Q. L.; Zhang, H. J. Tungsten disulfide: Synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020, 2, 217–239.

    Article  Google Scholar 

  27. Wang, L. H.; Jia, D. D.; Yue, L. J.; Zheng, K.; Zhang, A. T.; Jia, Q.; Liu, J. Q. In situ fabrication of a uniform Co-MOF shell coordinated with CoNiO2 to enhance the energy storage capability of NiCo-LDH via vapor-phase growth. ACS Appl. Mater. Interfaces 2020, 12, 47526–47538.

    Article  CAS  Google Scholar 

  28. Liu, X.; Ye, L.; Du, Y. Q.; Zhao, L. J. Metal organic framework derived core-shell hollow CoSx@NiCo-LDH as advanced electrode for high-performance supercapacitor. Mater. Lett. 2020, 258, 126812.

    Article  CAS  Google Scholar 

  29. Zhu, Y. L.; Du, W.; Zhang, Q. L.; Yang, H.; Zong, Q.; Wang, Q. Q.; Zhou, Z.; Zhan, J. H. A metal-organic framework template derived hierarchical Mo-doped LDHs@MOF-Se core—shell array electrode for supercapacitors. Chem. Commun. (Camb) 2020, 56, 13848–13851.

    Article  CAS  Google Scholar 

  30. Zhang, Y. N.; Zhang, Y.; Li, L.; Chen, J. L.; Li, P. Z.; Huang, W. H. One-step in situ growth of high-density POMOFs films on carbon cloth for the electrochemical detection of bromate. J. Electroanal. Chem. 2020, 861, 113939.

    Article  CAS  Google Scholar 

  31. Ramachandran, R.; Lan, Y. C.; Xu, Z. X.; Wang, F. Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors. ACS Appl. Energy Mater. 2020, 3, 6633–6643.

    Article  CAS  Google Scholar 

  32. Min, X. B.; Li, X. Y.; Zhao, J.; Hu, X. X.; Yang, W. C. Heterostructured TiO2@HKUST-1 for the enhanced removal of methylene blue by integrated adsorption and photocatalytic degradation. Environ. Technol. 2020, 42, 4134–144.

    Google Scholar 

  33. Mehraj, O.; Sofi, F. A.; Moosvi, S. K.; Naqash, W.; Majid, K. Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. J. Mater. Sci. Mater. Electr. 2018, 29, 3358–3369.

    Article  CAS  Google Scholar 

  34. Wang, S. H.; Zhu, J. Y.; Zhang, S. S.; Zhang, X. W.; Ge, F.; Xu, Y. The catalytic degradation of nitrobenzene by the Cu-Co-Fe-LDH through activated oxygen under ambient conditions. Dalton Trans. 2020, 49, 3999–4011.

    Article  CAS  Google Scholar 

  35. Kumar, L.; Boruah, P. K.; Borthakur, S.; Saikia, L.; Das, M. R.; Deka, S. CuCo-layered double hydroxide nanosheet-based polyhedrons for flexible supercapacitor cells. ACS Appl. Nano Mater. 2021, 4, 5250–5262.

    Article  CAS  Google Scholar 

  36. Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. (Weinh) 2021, 8, 2002631.

    Article  CAS  Google Scholar 

  37. Zhang, A. M.; Zhang, M.; Lan, D.; Wang, H. N.; Tang, Y. J.; Wang, X. L.; Dong, L. Z.; Zhang, L.; Li, S. L.; Lan, Y. Q. Polyoxometalate-based metal-organic framework on carbon cloth with a hot-pressing method for high-performance lithium-ion batteries. Inorg. Chem. 2018, 57, 11726–11731.

    Article  CAS  Google Scholar 

  38. Tian, Z. W.; Liu, Q.; Bian, B. Enhanced catalytic performance of Co methanation over VOx assisted Ni/MCF catalyst. Sustain. Energy Fuels 2020, 4, 2396–2403.

    Article  CAS  Google Scholar 

  39. Yu, Y. W.; Wang, H. M.; Zhang, H. Z.; Tan, Y. R.; Wang, Y. L.; Song, K. F.; Yang, B. Q.; Yuan, L. F.; Shen, X. D.; Hu, X. L. Blanket-like Co(OH)2/CoOOH/Co3O4/Cu(OH)2 composites on Cu foam for hybrid supercapacitor. Electrochim. Acta 2020, 334, 135559.

    Article  CAS  Google Scholar 

  40. Bahaa, A.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Metal-organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8620–8632.

    Article  CAS  Google Scholar 

  41. Li, T.; Li, G. H.; Li, L. H.; Liu, L.; Xu, Y.; Ding, H. Y.; Zhang, T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2562–2572.

    Article  CAS  Google Scholar 

  42. Xiong, G. P.; He, P. G.; Wang, D. N.; Zhang, Q. Q.; Chen, T. F.; Fisher, T. S. Hierarchical Ni-Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 2016, 26, 5460–5470.

    Article  CAS  Google Scholar 

  43. Yang, Q. H.; Li, Z. H.; Zhang, R. K.; Zhou, L.; Shao, M. F.; Wei, M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy 2017, 41, 408–416.

    Article  CAS  Google Scholar 

  44. Qi, K.; Hou, R. Z.; Zaman, S.; Qiu, Y. B.; Xia, B. Y.; Duan, H. W. Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 18021–18028.

    Article  CAS  Google Scholar 

  45. Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/Cos/metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.

    Article  CAS  Google Scholar 

  46. Du, L. L.; Du, W. M.; Ren, H. L.; Wang, N.; Yao, Z. J.; Shi, X. S.; Zhang, B.; Zai, J. T.; Qian, X. F. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for highperformance hybrid asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22527–22535.

    Article  CAS  Google Scholar 

  47. Yuan, Z.; Wang, H. Y.; Shen, J. L.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 22163–22174.

    Article  CAS  Google Scholar 

  48. Ge, P.; Li, S. J.; Shuai, H. L.; Xu, W.; Tian, Y.; Yang, L.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 2018, 54, 26–38.

    Article  CAS  Google Scholar 

  49. Nagaraju, G.; Raju, G. S.; Ko, Y. H.; Yu, J. S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 2016, 8, 812–825.

    Article  CAS  Google Scholar 

  50. Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. D. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441–15447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22001156), the Youth Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20210602), and Science Foundation of Science and Technology Department of Shaanxi Province (No. 2021JQ-533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhuan Huang.

Electronic Supplementary Material

12274_2022_4545_MOESM1_ESM.pdf

Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, J., Su, C. et al. Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors. Nano Res. 15, 8983–8990 (2022). https://doi.org/10.1007/s12274-022-4545-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4545-6

Keywords

Navigation