Skip to main content
Log in

Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs), with the utmost atom utilization, have attracted extensive interests for various catalytic applications. The coordination environment of SACs has been recognized to play a vital role in catalysis while their precise regulation at atomic level remains an immense challenge. Herein, a post metal halide modification (PMHM) strategy has been developed to construct Ni-N4 sites with axially coordinated halogen atoms, named Ni1N-C (X) (X = Cl, Br, and I), on pre-synthetic nitrogen-doped carbon derived from metal-organic frameworks. The axial halogen atoms with distinct electronegativity can break the symmetric charge distribution of planar Ni-N4 sites and regulate the electronic states of central Ni atoms in Ni1N-C (X) (X = Cl, Br, and I). Significantly, the Ni1N-C (Cl) catalyst, decorated with the most electronegative Cl atoms, exhibits Faradaic efficiency of CO up to 94.7% in electrocatalytic CO2 reduction, outperforming Ni1N-C (Br) and Ni1N-C (I) catalysts. Moreover, Ni1N-C (Cl) also presents superb performance in Zn-CO2 battery with ultrahigh CO selectivity and great durability. Theoretical calculations reveal that the axially coordinated Cl atom remarkably facilitates *COOH intermediate formation on single-atom Ni sites, thereby boosting the CO2 reduction performance of Ni1N-C (Cl). This work offers a facile strategy to tailor the axial coordination environments of SACs at atomic level and manifests the crucial role of axial coordination microenvironments in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  2. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  3. Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

    Article  CAS  Google Scholar 

  4. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    Article  CAS  Google Scholar 

  5. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  6. Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

    Article  CAS  Google Scholar 

  7. Yi, J. D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K. T.; Luo, J.; Liang, Y. L.; Huang, Y. B.; Cao, R. Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3, 883–889.

    Article  CAS  Google Scholar 

  8. Yang, S. X.; Yu, Y. H.; Dou, M. L.; Zhang, Z. P.; Dai, L. M.; Wang, F. Two-dimensional conjugated aromatic networks as high-site-density and single-atom electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 14724–14730.

    Article  CAS  Google Scholar 

  9. Zhang, J.; Wang, Y. X.; Yang, C. J.; Chen, S. A.; Li, Z. J.; Cheng, Y.; Wang, H. N.; Xiang, Y.; Lu, S. F.; Wang, S. Y. Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Res. 2021, 14, 4650–4657.

    Article  CAS  Google Scholar 

  10. Lin, L. L.; Yu, Q. L.; Peng, M.; Li, A. W.; Yao, S. Y.; Tian, S. H.; Liu, X.; Li, A.; Jiang, Z.; Gao, R. et al. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. J. Am. Chem. Soc. 2021, 143, 309–317.

    Article  CAS  Google Scholar 

  11. Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

    Article  CAS  Google Scholar 

  12. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    Article  CAS  Google Scholar 

  13. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  14. Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

    Article  CAS  Google Scholar 

  15. Yang, Q.; Jia, Y.; Wei, F. F.; Zhuang, L. Z.; Yang, D. J.; Liu, J. Z.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. D. Understanding the activity of Co-N4−xCx in atomic metal catalysts for oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 6122–6127.

    Article  CAS  Google Scholar 

  16. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  17. Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

    Article  CAS  Google Scholar 

  18. Daiyan, R.; Zhu, X. F.; Tong, Z. Z.; Gong, L. L.; Razmjou, A.; Liu, R. S.; Xia, Z. H.; Lu, X. Y.; Dai, L. M.; Amal, R. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy 2020, 78, 105213.

    Article  CAS  Google Scholar 

  19. Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  21. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  22. Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

    Article  CAS  Google Scholar 

  23. Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270–7284.

    Article  CAS  Google Scholar 

  24. Yang, H. Z.; Shi, R.; Shang, L.; Zhang, T. R. Recent advancements of porphyrin-like single-atom catalysts: Synthesis and applications. Small Struct. 2021, 2, 2100007.

    Article  CAS  Google Scholar 

  25. Huang, M.; Deng, B. W.; Zhao, X. L.; Zhang, Z. Y.; Li, F.; Li, K. L.; Cui, Z. H.; Kong, L. X.; Lu, J. M; Dong, F. et. al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 2022, 16, 2110–2119.

    Article  CAS  Google Scholar 

  26. Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

    Article  CAS  Google Scholar 

  27. Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal-organic frameworks into Co-N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.

    Article  CAS  Google Scholar 

  28. Zhi, Q. J.; Jiang, R.; Liu, W. P.; Sun, T. T.; Wang, K.; Jiang, J. Z. Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano Res. 2022, 15, 1803–1808.

    Article  CAS  Google Scholar 

  29. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  30. Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Article  Google Scholar 

  31. Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

    Article  CAS  Google Scholar 

  32. Wang, X. Y.; Wang, Y.; Sang, X. H.; Zheng, W. Z.; Zhang, S. H.; Shuai, L.; Yang, B.; Li, Z. J.; Chen, J. M.; Lei, L. C. et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4192–4198.

    Article  CAS  Google Scholar 

  33. Chen, Z. Q.; Huang, A. J.; Yu, K.; Cui, T. T.; Zhuang, Z. W.; Liu, S. J.; Li, J. Z.; Tu, R. Y.; Sun, K. A.; Tan, X. et al. Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range. Energy Environ. Sci. 2021, 14, 3430–3437.

    Article  CAS  Google Scholar 

  34. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341, 1230444.

    Article  Google Scholar 

  35. Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

    Article  CAS  Google Scholar 

  36. Islamoglu, T.; Goswami, S.; Li, Z. Y.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc. Chem. Res. 2017, 50, 805–813.

    Article  CAS  Google Scholar 

  37. Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

    Article  CAS  Google Scholar 

  38. Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.

    Article  CAS  Google Scholar 

  39. Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.

    Article  CAS  Google Scholar 

  40. Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

    Article  Google Scholar 

  41. Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

    Article  CAS  Google Scholar 

  42. Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

    Article  CAS  Google Scholar 

  43. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  44. Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

    Article  CAS  Google Scholar 

  45. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

    Article  CAS  Google Scholar 

  46. Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

    Article  CAS  Google Scholar 

  47. Stavretis, S. E.; Atanasov, M.; Podlesnyak, A. A.; Hunter, S. C.; Neese, F.; Xue, Z. L. Magnetic transitions in iron porphyrin halides by inelastic neutron scattering and ab initio studies of zero-field splittings. Inorg. Chem. 2015, 54, 9790–9801.

    Article  CAS  Google Scholar 

  48. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557–1559.

    Article  CAS  Google Scholar 

  49. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA. 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  50. Matienzo, J.; Yin, L. I.; Grim, S. O.; Swartz, W. E. Jr. X-ray photoelectron spectroscopy of nickel compounds. Inorg. Chem. 1973, 12, 2762–2769.

    Article  CAS  Google Scholar 

  51. Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

    Article  CAS  Google Scholar 

  52. Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

    Article  Google Scholar 

  53. Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. Nanocomposite of Ag-AgBr-TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B 2011, 106, 445–452.

    Article  CAS  Google Scholar 

  54. Fan, Q.; Huang, J. W.; Dong, N. N.; Hong, S.; Yan, C.; Liu, Y. C.; Qiu, J. S.; Wang, J.; Sun, Z. Y. Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics. ACS Photonics 2019, 6, 1051–1057.

    Article  CAS  Google Scholar 

  55. Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

    Article  CAS  Google Scholar 

  56. Liu, M.; Pang, Y. J.; Zhang, B.; Luna, P. D.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Article  CAS  Google Scholar 

  57. Sun, S. N.; Li, N.; Liu, J.; Ji, W. X.; Dong, L. Z.; Wang, Y. R.; Lan Y. Q. Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system. Natl. Sci. Rev. 2021, 8, nwaa195.

    Article  CAS  Google Scholar 

  58. Zheng, T. T.; Jiang, K.; Wang, H. T. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1500402), the National Natural Science Foundation of China (NSFC) (Nos. 21725101, 21871244, and 22001242), International Partnership Program of Chinese Academy of Sciences (CAS) (No. 211134KYSB20190109), Collaborative Innovation Program of Hefei Science Center, CAS (No. 2020HSC-CIP005), and the Fundamental Research Funds for the Central Universities (Nos. WK2060000038 and WK2060000040). We thank the XAFS measurements from 1W1B station at BSRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jiao or Hai-Long Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, JX., Yang, W., Jia, Z. et al. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 15, 10063–10069 (2022). https://doi.org/10.1007/s12274-022-4467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4467-3

Keywords

Navigation