Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Nano Research
  3. Article
Volatolomics in healthcare and its advanced detection technology
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Distinguish oral-source VOCs and control their potential impact on breath biomarkers

04 January 2022

Dianlong Ge, Jijuan Zhou, … Yannan Chu

Smelling the Disease: Diagnostic Potential of Breath Analysis

02 February 2023

Anju Sharma, Rajnish Kumar & Pritish Varadwaj

An Overview of Volatile Organic Compounds (VOCs)

22 December 2022

Karishma Bagawan, M. Roshni & D. Jagadeesan

Volatile organic compounds: instrumental and canine detections link an individual to the crime scene

02 July 2019

Vera Filetti, Giulio Di Mizio, … Francesco Sessa

Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening

13 April 2018

Xianhua Zhong, Dan Li, … Changjun Hou

A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS

02 April 2018

Reena Thriumani, Ammar Zakaria, … Krishna C. Persaud

Pandemic products and volatile chemical emissions

27 August 2020

Anne Steinemann, Neda Nematollahi, … Spas D. Kolev

Analysis of volatile organic compounds from deep airway in the lung through intubation sampling

26 August 2022

Wei Xu, Jin Zhang, … Yannan Chu

Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems

05 July 2022

E. M. Gashimova, A. Z. Temerdashev, … D. V. Perunov

Download PDF
  • Review Article
  • Published: 29 June 2022

Volatolomics in healthcare and its advanced detection technology

  • Wenwen Hu1 na1,
  • Weiwei Wu2 na1,
  • Yingying Jian2 na1,
  • Hossam Haick3,
  • Guangjian Zhang4,
  • Yun Qian5,
  • Miaomiao Yuan6 &
  • …
  • Mingshui Yao7,8 

Nano Research volume 15, pages 8185–8213 (2022)Cite this article

  • 1176 Accesses

  • 13 Citations

  • 95 Altmetric

  • Metrics details

Abstract

Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. GBD 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2020, 396, 1204–1222.

    Article  Google Scholar 

  2. Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 7–33.

    Google Scholar 

  3. Gould, M. K.; Huang, B. Z.; Tammemagi, M. C.; Kinar, Y.; Shiff, R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am. J. Respir. Crit. Care Med. 2021, 204, 445–453.

    Article  Google Scholar 

  4. Yang, J. S.; Xu, R. Y.; Wang, C. C.; Qiu, J. D.; Ren, B.; You, L. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review. Cancer Commun. 2021, 41, 1257–1274.

    Article  CAS  Google Scholar 

  5. Acharya B.; Acharya A.; Gautam, S.; Ghimire, S. P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075.

    Article  CAS  Google Scholar 

  6. Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021, 19, 171–183.

    Article  CAS  Google Scholar 

  7. Ito, E.; Iha, K.; Yoshimura, T.; Nakaishi, K.; Watabe, S. Early diagnosis with ultrasensitive ELISA. Adv. Clin. Chem. 2021, 101, 121–133.

    Article  CAS  Google Scholar 

  8. Afzal, A. Molecular diagnostic technologies for COVID-19: Limitations and challenges. J. Adv. Res. 2020, 26, 149–159.

    Article  CAS  Google Scholar 

  9. Pagana, K. D.; Pagana, T. J.; Pagana T. N. Mosby’s Diagnostic and Laboratory Test Reference, 14th ed.; Elsevier: St. Louis, 2019.

    Google Scholar 

  10. Herring, W. Learning Radiology: Recognizing the Basics, 4th ed.; Elsevier: Philadelphia, 2019.

    Google Scholar 

  11. Lamoureux, C.; Hanna, T. N.; Sprecher, D.; Weber, S.; Callaway, E. Radiologist errors by modality, anatomic region, and pathology for 1.6 million exams: What we have learned. Emerg. Radiol. 2021, 28, 1135–1141.

    Article  Google Scholar 

  12. Velusamy, P.; Su, C. H.; Ramasamy, P.; Arun, V.; Rajnish, N.; Raman, P.; Baskaralingam, V.; Senthil Kumar, S. M.; Gopinath, S. C. B. Volatile organic compounds as potential biomarkers for noninvasive disease detection by nanosensors: A comprehensive review. Crit. Rev. Anal. Chem., in press, https://doi.org/10.1080/10408347.2022.2043145.

  13. Zhong, W. H.; Zhang, X. Y.; Zeng, Y. X.; Lin, D. J.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 2021, 14, 2067–2089.

    Article  CAS  Google Scholar 

  14. Zhang, S.; Pang, J. B.; Li, Y. F.; Yang, F.; Gemming, T.; Wang, K.; Wang, X.; Peng, S.; Liu, X. Y.; Chang, B. et al. Emerging internet of things driven carbon nanotubes-based devices. Nano Res., in press, https://doi.org/10.1007/s12274-021-3986-7.

  15. Ruddy, E. N.; Carroll, L. A. Select the best VOC control strategy. Chem. Eng. Prog. 1993, 89, 28–35.

    Google Scholar 

  16. Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88.

    Article  CAS  Google Scholar 

  17. Kukkar, D.; Vellingiri, K.; Kaur, R.; Bhardwaj, S. K.; Deep, A.; Kim, K. H. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225–246.

    Article  CAS  Google Scholar 

  18. Zhang, J.; Tian, Y. H.; Luo, Z. W.; Qian, C.; Li, W. W.; Duan, Y. X. Breath volatile organic compound analysis: An emerging method for gastric cancer detection. J. Breath Res. 2021, 15, 044002.

    Article  CAS  Google Scholar 

  19. Zhong, X. H.; Li, D.; Du, W.; Yan, M. Q.; Wang, Y.; Huo, D. Q.; Hou, C. J. Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Anal. Bioanal. Chem. 2018, 410, 3671–3681.

    Article  CAS  Google Scholar 

  20. Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566.

    Article  CAS  Google Scholar 

  21. Zhu, B.; Wang, H. C. Diagnostics of Traditional Chinese Medicine; Singing Dragon: London, 2010.

    Google Scholar 

  22. Corradi, M.; Mutti, A. News from the breath analysis summit 2011. J. Breath Res. 2012, 6, 020201.

    Article  Google Scholar 

  23. Dima, A. C.; Balaban, D. V.; Dima, A. Diagnostic application of volatile organic compounds as potential biomarkers for detecting digestive neoplasia: A systematic review. Diagnostics 2021, 11, 2317.

    Article  CAS  Google Scholar 

  24. Vishinkin, R.; Busool, R.; Mansour, E.; Fish, F.; Esmail, A.; Kumar, P.; Gharaa, A.; Cancilla, J. C.; Torrecilla, J. S.; Skenders, G. et al. Profiles of volatile biomarkers detect tuberculosis from skin. Adv. Sci. 2021, 8, 2100235.

    Article  CAS  Google Scholar 

  25. da Costa, B. R. B.; De Martinis, B. S. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. Clin. Mass Spectrom. 2020, 18, 27–37.

    Article  Google Scholar 

  26. Janssens, E.; van Meerbeeck, J. P.; Lamote, K. Volatile organic compounds in human matrices as lung cancer biomarkers: A systematic review. Crit. Rev. Oncol. Hematol. 2020, 153, 103037.

    Article  Google Scholar 

  27. Van Malderen, K.; De Winter, B. Y.; De Man, J. G.; De Schepper, H. U.; Lamote, K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020, 54, 102725.

    Article  Google Scholar 

  28. Broza, Y. Y.; Zhou, X.; Yuan, M. M.; Qu, D. Y.; Zheng, Y. B.; Vishinkin, R.; Khatib, M.; Wu, W. W.; Haick, H. Disease detection with molecular biomarkers: From chemistry of body fluids to nature-inspired chemical sensors. Chem. Rev. 2019, 119, 11761–11817.

    Article  CAS  Google Scholar 

  29. Krilaviciute, A.; Heiss, J. A.; Leja, M.; Kupcinskas, J.; Hawick, H.; Brenner, H. Detection of cancer through exhaled breath: A systematic review. Oncotarget 2015, 6, 38643–38657.

    Article  Google Scholar 

  30. Hakim, M.; Broza, Y. Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966.

    Article  CAS  Google Scholar 

  31. Broza, Y. Y.; Vishinkin, R.; Barash, O.; Nakhleh, M. K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859.

    Article  CAS  Google Scholar 

  32. Haick, H.; Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449.

    Article  CAS  Google Scholar 

  33. Van den Velde, S.; Nevens, F.; Van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2008, 875, 344–348.

    Article  CAS  Google Scholar 

  34. Lubes, G.; Goodarzi, M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322.

    Article  CAS  Google Scholar 

  35. Mentana, A.; Camele, I.; Mang, S. M.; De Benedetto, G. E.; Frisullo, S.; Centonze, D. Volatolomics approach by HS-SPME-GC-MS and multivariate analysis to discriminate olive tree varieties infected by Xylella fastidiosa. Phytochem. Anal. 2019, 30, 623–634.

    Article  CAS  Google Scholar 

  36. Choi, M. J.; Oh, C. H. 2nd dimensional GC-MS analysis of sweat volatile organic compounds prepared by solid phase microextraction. Technol. Health Care 2014, 22, 481–488.

    Article  Google Scholar 

  37. Gruber, B.; Keller, S.; Groeger, T.; Matuschek, G.; Szymczak, W.; Zimmermann, R. Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers. J. Breath Res. 2016, 10, 036003.

    Article  Google Scholar 

  38. Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2011, 879, 3360–3366.

    Article  CAS  Google Scholar 

  39. Stefanuto, P. H.; Zanella, D.; Vercammen, J.; Henket, M.; Schleich, F.; Louis, R.; Focant, J. F. Multimodal combination of GC × GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath. Sci. Rep. 2020, 10, 16159.

    Article  CAS  Google Scholar 

  40. Yang, J.; Li, Y. J.; Liu, Q. Q.; Li, L.; Feng, A. Z.; Wang, T. Y.; Zheng, S.; Xu, A. D.; Lyu, J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med. 2020, 13, 57–69.

    Article  Google Scholar 

  41. Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673.

    Article  CAS  Google Scholar 

  42. Liu, K.; Shang, C. D.; Wang, Z. L.; Qi, Y. Y.; Miao, R.; Liu, K. Q.; Liu, T. H.; Fang, Y. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat. Commun. 2018, 9, 1695.

    Article  Google Scholar 

  43. Hu, W. W.; Wan, L. T.; Jian, Y. Y.; Ren, C.; Jin, K.; Su, X. H.; Bai, X. X.; Haick, H.; Yao, M. S.; Wu, W. W. Electronic noses: From advanced materials to sensors aided with data processing. Adv. Mater. Technol. 2019, 4, 1800488.

    Google Scholar 

  44. Broza, Y. Y.; Zuri, L.; Haick, H. Combined volatolomics for monitoring of human body chemistry. Sci. Rep. 2014, 4, 4611.

    Article  Google Scholar 

  45. Xu, Z. Q.; Broza, Y. Y.; Ionsecu, R.; Tisch, U.; Ding, L.; Liu, H.; Song, Q.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S. et al. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions. Br. J. Cancer 2013, 108, 941–950.

    Article  CAS  Google Scholar 

  46. Amal, H.; Ding, L.; Liu, B. B.; Tisch, U.; Xu, Z. Q.; Shi, D. Y.; Zhao, Y.; Chen, J.; Sun, R. X.; Liu, H. et al. The scent fingerprint of hepatocarcinoma: In-vitro metastasis prediction with volatile organic compounds (VOCS). Int. J. Nanomedicine 2012, 7, 4135–4146.

    CAS  Google Scholar 

  47. Xue, R. Y.; Dong, L.; Zhang, S.; Deng, C. H.; Liu, T. T.; Wang, J. Y.; Shen, X. Z. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1181–1186.

    Article  CAS  Google Scholar 

  48. Hakim, M.; Billan, S.; Tisch, U.; Peng, G.; Dvrokind, I.; Marom, O.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 2011, 104, 1649–1655.

    Article  CAS  Google Scholar 

  49. Peng, G.; Hakim, M.; Broza, Y. Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551.

    Article  CAS  Google Scholar 

  50. Phillips, M.; Altorki, N.; Austin, J. H. M.; Cameron, R. B.; Cataneo, R. N.; Kloss, R.; Maxfield, R. A.; Munawar, M. I.; Pass, H. I.; Rashid, A. et al. Detection of lung cancer using weighted digital analysis of breath biomarkers. Clin. Chim. Acta 2008, 393, 76–84.

    Article  CAS  Google Scholar 

  51. Phillips, M.; Cataneo, R. N.; Ditkoff B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C. S.; Rahbari-Oskoui, F.; Wong, C. Volatile markers of breast cancer in the breath. Breast J. 2003, 9, 184–191.

    Article  Google Scholar 

  52. Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C. S.; Tietje, O.; Wong, C. Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res. Treat. 2006, 99, 19–21.

    Article  CAS  Google Scholar 

  53. Phillips, M.; Cataneo, R. N.; Saunders, C.; Hope, P.; Schmitt, P.; Wai, J. Volatile biomarkers in the breath of women with breast cancer. J. Breath Res. 2010, 4, 026003.

    Article  Google Scholar 

  54. Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A. Exhaled volatile organic compounds in patients with non-small cell lung cancer: Cross sectional and nested short-term follow-up study. Respir. Res. 2005, 6, 71.

    Article  Google Scholar 

  55. Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. Int. J. Cancer 2010, 126, 2663–2670.

    CAS  Google Scholar 

  56. Broza, Y. Y.; Kremer, R.; Tisch, U.; Gevorkyan, A.; Shiban, A.; Best, L. A.; Haick, H. A nanomaterial-based breath test for short-term follow-up after lung tumor resection. Nanomedicine 2013, 9, 15–21.

    Article  CAS  Google Scholar 

  57. Gaspar, E. M.; Lucena, A. F.; Duro da Costa, J.; Chaves das Neves, H. Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders. J. Chromatogr. A 2009, 1216, 2749–2756.

    Article  CAS  Google Scholar 

  58. Song, G.; Qin, T.; Liu, H.; Xu, G. B.; Pan, Y. Y.; Xiong, F. X.; Gu, K. S.; Sun, G. P.; Chen, Z. D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231.

    Article  Google Scholar 

  59. Barash, O.; Peled, N.; Hirsch, F. R.; Haick, H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 2009, 5, 2618–2624.

    Article  CAS  Google Scholar 

  60. Davies, M. P. A.; Barash, O.; Jeries, R.; Peled, N.; Ilouze, M.; Hyde, R.; Marcus, M. W.; Field, J. K.; Haick, H. Unique volatolomic signatures of TP53 and KRAS in lung cells. Br. J. Cancer 2014, 111, 1213–1221.

    Article  CAS  Google Scholar 

  61. Chen, X.; Xu, F. J.; Wang, Y.; Pan, Y. F.; Lu, D. J.; Wang, P.; Ying, K. J.; Chen, E. G.; Zhang, W. M. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007, 110, 835–844.

    Article  CAS  Google Scholar 

  62. Filipiak, W.; Sponring, A.; Filipiak, A.; Ager, C.; Schubert, J.; Miekisch, W.; Amann, A.; Troppmair, J. TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 182–195.

    Article  CAS  Google Scholar 

  63. Amal, H.; Leja, M.; Funka, K.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Haick, H. Detection of precancerous gastric lesions and gastric cancer through exhaled breath. Gut 2016, 65, 400–407.

    Article  CAS  Google Scholar 

  64. Hicks, L. C.; Huang, J. Z.; Kumar, S.; Powles, S. T.; Orchard, T. R.; Hanna, G. B.; Williams, H. R. T. Analysis of exhaled breath volatile organic compounds in inflammatory bowel disease: A pilot study. J. Crohns Colitis 2015, 9, 731–737.

    Article  Google Scholar 

  65. Karban, A.; Nakhleh, M. K.; Cancilla, J. C.; Vishinkin, R.; Rainis, T.; Koifman, E.; Jeries, R.; Ivgi, H.; Torrecilla, J. S.; Haick, H. Programmed nanoparticles for tailoring the detection of inflammatory bowel diseases and irritable bowel syndrome disease via breathprint. Adv. Healthc. Mater. 2016, 5, 2339–2344.

    Article  CAS  Google Scholar 

  66. Winlaw, D. S.; Keogh, A. M.; Schyvens, C. G.; Spratt, P. M.; Macdonald, P. S.; Smythe, G. A. Increased nitric oxide production in heart failure. Lancet 1994, 344, 373–374.

    Article  CAS  Google Scholar 

  67. Pijls, K. E.; Smolinska, A.; Jonkers, D. M. A. E.; Dallinga, J. W.; Masclee, A. A. M.; Koek, G. H.; van Schooten, F. J. A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis. Sci. Rep. 2016, 6, 19903.

    Article  CAS  Google Scholar 

  68. Chen, S.; Zieve, L.; Mahadevan, V. Mercaptans and dimethyl sulfide in the breath of patients with cirrhosis of the liver. Effect of feeding methionine. J. Lab. Clin. Med. 1970, 75, 628–635.

    CAS  Google Scholar 

  69. Kaji, H.; Hisamura, M.; Saito, N.; Murao, M. Gas chromatographic determination of volatile sulfur compounds in the expired alveolar air in hepatopathic subjects. J. Chromatogr. 1978, 145, 464–468.

    Article  CAS  Google Scholar 

  70. Cikach, F. S. Jr.; Tonelli, A. R.; Barnes, J.; Paschke, K.; Newman, J.; Grove, D.; Dababneh, L.; Wang, S. H.; Dweik, R. A. Breath analysis in pulmonary arterial hypertension. Chest 2014, 145, 551–558.

    Article  Google Scholar 

  71. Mansoor, J. K.; Schelegle, E. S.; Davis, C. E.; Walby, W. F.; Zhao, W. X.; Aksenov, A. A.; Pasamontes, A.; Figueroa, J.; Allen, R. Analysis of volatile compounds in exhaled breath condensate in patients with severe pulmonary arterial hypertension. PLoS One 2014, 9, e95331.

    Article  CAS  Google Scholar 

  72. Phillips, M.; Cataneo, R. N.; Condos, R.; Ring Erickson, G. A.; Greenberg, J.; La Bombardi, V.; Munawar, M. I.; Tietje, O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis 2007, 87, 44–52.

    Article  CAS  Google Scholar 

  73. Tangerman, A.; Winkel, E. G. Extra-oral halitosis: An overview. J. Breath Res. 2010, 4, 017003.

    Article  CAS  Google Scholar 

  74. Avincsal, M. O.; Altundag, A.; Ulusoy, S.; Dinc, M. E.; Dalgic, A.; Topak, M. Halitosis associated volatile sulphur compound levels in patients with laryngopharyngeal reflux. Eur. Arch. Otorhinolaryngol. 2016, 273, 1515–1520.

    Article  Google Scholar 

  75. Corradi, M.; Rubinstein, I.; Andreoli, R.; Manini, P.; Caglieri, A.; Poli, D.; Alinovi, R.; Mutti, A. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2003, 167, 1380–1386.

    Article  Google Scholar 

  76. Van Berkel, J. J. B. N.; Dallinga, J. W.; Möller, G. M.; Godschalk, R. W. L.; Moonen, E. J.; Wouters, E. F. M.; Van Schooten, F. J. A profile of volatile organic compounds in breath discriminates COPD patients from controls. Respir. Med. 2010, 104, 557–563.

    Article  CAS  Google Scholar 

  77. Paredi, P.; Kharitonov, S. A.; Leak, D.; Ward, S.; Cramer, D.; Barnes, P. J. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000, 162, 369–373.

    Article  CAS  Google Scholar 

  78. Aksenov, A. A.; Gojova, A.; Zhao, W. X.; Morgan, J. T.; Sankaran, S.; Sandrock, C. E.; Davis, C. E. Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: A cell’s “chemical odor fingerprint”. ChemBioChem 2012, 13, 1053–1059.

    Article  CAS  Google Scholar 

  79. Halliwell, B.; Gutteridge, J. M.; Cross, C. E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620.

    CAS  Google Scholar 

  80. Broza, Y. Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid volatolomics and disease detection. Angew. Chem., Int. Ed. 2015, 54, 11036–11048.

    Article  CAS  Google Scholar 

  81. Opitz, P.; Herbarth, O. The volatilome-investigation of volatile organic metabolites (VOM) as potential tumor markers in patients with head and neck squamous cell carcinoma (HNSCC). J. Otolaryngol. Head Neck Surg. 2018, 47, 42.

    Article  Google Scholar 

  82. Cauchi, M.; Weber, C. M.; Bolt, B. J.; Spratt, P. B.; Bessant, C.; Turner, D. C.; Willis, C. M.; Britton, L. E.; Turner, C.; Morgan, G. Evaluation of gas chromatography mass spectrometry and pattern recognition for the identification of bladder cancer from urine headspace. Anal. Methods 2016, 8, 4037–4046.

    Article  CAS  Google Scholar 

  83. Guadagni, R.; Miraglia, N.; Simonelli, A.; Silvestre, A.; Lamberti, M.; Feola, D.; Acampora, A.; Sannolo, N. Solid-phase microextraction-gas chromatography-mass spectrometry method validation for the determination of endogenous substances: Urinary hexanal and heptanal as lung tumor biomarkers. Anal. Chim. Acta 2011, 701, 29–36.

    Article  CAS  Google Scholar 

  84. Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G. K.; Oka, H. Urinary volatile compounds as biomarkers for lung cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684.

    Article  CAS  Google Scholar 

  85. Yang, Q.; Shi, X. Z.; Wang, Y.; Wang, W. Z.; He, H. B.; Lu, X.; Xu, G. W. Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system. J. Sep. Sci. 2010, 33, 1495–1503.

    Article  CAS  Google Scholar 

  86. Banday, K. M.; Pasikanti, K. K.; Chan, E. C. Y.; Singla, R.; Rao, K. V. S.; Chauhan, V. S.; Nanda, R. K. Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal. Chem. 2011, 83, 5526–5534.

    Article  CAS  Google Scholar 

  87. Dospinescu, V. M.; Tiele, A.; Covington, J. A. Sniffing out urinary tract infection—Diagnosis based on volatile organic compounds and smell profile. Biosensors 2020, 10, 83.

    Article  Google Scholar 

  88. Yang, H.; Kim, D.; Kim, J.; Moon, D.; Song, H. S.; Lee, M.; Hong, S.; Park, T. H. Nanodisc-based bioelectronic nose using olfactory receptor produced in Escherichia coli for the assessment of the death-associated odor cadaverine. ACS Nano 2017, 11, 11847–11855.

    Article  CAS  Google Scholar 

  89. Probert, C. S. J.; Ahmed, I.; Khalid, T.; Johnson, E.; Smith, S.; Ratcliffe, N. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointestin. Liver Dis. 2009, 18, 337–343.

    Google Scholar 

  90. Cummings, J. H. Short chain fatty acids in the human colon. Gut 1981, 22, 763–779.

    Article  CAS  Google Scholar 

  91. Yokoyama, M. T.; Carlson, J. R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178.

    Article  CAS  Google Scholar 

  92. Lee, J. H.; Karamychev, V. N.; Kozyavkin, S. A.; Mills, D.; Pavlov, A. R.; Pavlova, N. V.; Polouchine, N. N.; Richardson, P. M.; Shakhova, V. V.; Slesarev, A. I. et al. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 2008, 9, 247.

    Article  Google Scholar 

  93. Ahmed, I.; Greenwood, R.; de Lacy Costello, B.; Ratcliffe, N. M.; Probert, C. S. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS One 2013, 8, e58204.

    Article  Google Scholar 

  94. Bannaga, A. S.; Farrugia, A.; Arasaradnam, R. P. Diagnosing inflammatory bowel disease using noninvasive applications of volatile organic compounds: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 1113–1122.

    Article  CAS  Google Scholar 

  95. Homann, N. Alcohol and upper gastrointestinal tract cancer: The role of local acetaldehyde production. Addict. Biol. 2001, 6, 309–323.

    Article  CAS  Google Scholar 

  96. Studer, S. M.; Orens, J. B.; Rosas, I.; Krishnan, J. A.; Cope, K. A.; Yang, S.; Conte, J. V.; Becker, P. B.; Risby, T. H. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J. Heart Lung Transplant. 2001, 20, 1158–1166.

    Article  CAS  Google Scholar 

  97. Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J. et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013, 8, 43–56.

    Article  CAS  Google Scholar 

  98. Paredi, P.; Kharitonov, S. A.; Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 1450–1454.

    Article  CAS  Google Scholar 

  99. Olopade, C. O.; Zakkar, M.; Swedler, W. I.; Rubinstein, I. Exhaled pentane levels in acute asthma. Chest 1997, 111, 862–865.

    Article  CAS  Google Scholar 

  100. Hunt, J. F.; Erwin, E.; Palmer, L.; Vaughan, J.; Malhotra, N.; Platts-Mills, T. A. E.; Gaston, B. Expression and activity of pH-regulatory glutaminase in the human airway epithelium. Am. J. Respir. Crit. Care Med. 2002, 165, 101–107.

    Article  Google Scholar 

  101. Ashutosh, K. Nitric oxide and asthma: A review. Curr. Opin. Pulm. Med. 2000, 6, 21–25.

    Article  CAS  Google Scholar 

  102. Kharitonov, S. A.; Yates, D.; Robbins, R. A.; Barnes, P. J.; Logan-Sinclair, R.; Shinebourne, E. A. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135.

    Article  CAS  Google Scholar 

  103. Persson, M. G.; Gustafsson, L. E.; Zetterström, O.; Agrenius, V.; Ihre, E. Single-breath nitric oxide measurements in asthmatic patients and smokers. Lancet 1994, 343, 146–147.

    Article  CAS  Google Scholar 

  104. Montuschi, P.; Corradi, M.; Ciabattoni, G.; Nightingale, J.; Kharitonov, S. A.; Barnes, P. J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999, 160, 216–220.

    Article  CAS  Google Scholar 

  105. Horváth, I.; Donnelly, L. E.; Kiss, A.; Kharitonov, S. A.; Lim, S.; Chung, K. F.; Barnes, P. J. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 1042–1046.

    Article  Google Scholar 

  106. Marom, O.; Nakhoul, F.; Tisch, U.; Shiban, A.; Abassi, Z.; Haick, H. Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine 2012, 7, 639–650.

    Article  CAS  Google Scholar 

  107. Simenhoff, M. L.; Burke, J. F.; Saukkonen, J. J.; Ordinario, A. T.; Doty, R.; Dunn, S. Biochemical profile of uremic breath. N. Engl. J. Med. 1977, 297, 132–135.

    Article  CAS  Google Scholar 

  108. Altomare, D. F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; de Gennaro, G. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg. 2013, 100, 144–150.

    Article  CAS  Google Scholar 

  109. McCurdy, M. R.; Sharafkhaneh, A.; Abdel-Monem, H.; Rojo, J.; Tittel, F. K. Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease. J. Breath Res. 2011, 5, 016003.

    Article  Google Scholar 

  110. Dekhuijzen, P. N.; Aben, K. K.; Dekker, I.; Aarts, L. P.; Wielders, P. L.; Van Herwaarden, C. L.; Bast, A. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1996, 154, 813–816.

    Article  CAS  Google Scholar 

  111. Balfour-Lynn, I. M.; Laverty, A.; Dinwiddie, R. Reduced upper airway nitric oxide in cystic fibrosis. Arch. Dis. Child. 1996, 75, 319–322.

    Article  CAS  Google Scholar 

  112. Thomas, S. R.; Kharitonov, S. A.; Scott, S. F.; Hodson, M. E.; Barnes, P. J. Nasal and exhaled nitric oxide is reduced in adult patients with cystic fibrosis and does not correlate with cystic fibrosis genotype. Chest 2000, 117, 1085–1089.

    Article  CAS  Google Scholar 

  113. Kamboures, M. A.; Blake, D. R.; Cooper, D. M.; Newcomb, R. L.; Barker, M.; Larson, J. K.; Meinardi, S.; Nussbaum, E.; Rowland, F. S. Breath sulfides and pulmonary function in cystic fibrosis. Proc. Natl. Acad. Sci. USA 2005, 102, 15762–15767.

    Article  CAS  Google Scholar 

  114. Galassetti, P. R.; Novak, B.; Nemet, D.; Rose-Gottron, C.; Cooper, D. M.; Meinardi, S.; Newcomb, R.; Zaldivar, F.; Blake, D. R. Breath ethanol and acetone as indicators of serum glucose levels: An initial report. Diabetes Technol. Ther. 2005, 7, 115–123.

    Article  CAS  Google Scholar 

  115. Novak, B. J.; Blake, D. R.; Meinardi, S.; Rowland, F. S.; Pontello, A.; Cooper, D. M.; Galassetti, P. R. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15613–15618.

    Article  CAS  Google Scholar 

  116. Pelli, M. A.; Trovarelli, G.; Capodicasa, E.; De Medio, G. E.; Bassotti, G. Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis. Colon Rectum 1999, 42, 71–76.

    Article  CAS  Google Scholar 

  117. Kokoszka, J.; Nelson, R. L.; Swedler, W. I.; Skosey, J.; Abcarian, H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis. Colon Rectum 1993, 36, 597–601.

    Article  CAS  Google Scholar 

  118. Phillips, M.; Boehmer, J. P.; Cataneo, R. N.; Cheema, T.; Eisen, H. J.; Fallon, J. T.; Fisher, P. E.; Gass, A.; Greenberg, J.; Kobashigawa, J. et al. Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am. J. Cardiol. 2004, 94, 1593–1594.

    Article  CAS  Google Scholar 

  119. Hiroshi, K.; Masaya, H.; Nariyoshi, S.; Makoto, M. Evaluation of volatile sulfur compounds in the expired alveolar gas in patients with liver cirrhosis. Clin. Chim. Acta 1978, 85, 279–284.

    Article  Google Scholar 

  120. Tangerman, A.; Meuwese-Arends, M. T.; van Tongeren, J. H. M. A new sensitive assay for measuring volatile sulphur compounds in human breath by Tenax trapping and gas chromatography and its application in liver cirrhosis. Clin. Chim. Acta 1983, 130, 103–110.

    Article  CAS  Google Scholar 

  121. Hisamura, M. Quantitative analysis of methyl mercaptan and dimethyl sulfide in human expired alveolar gas and its clinical application: Study in normal subjects and patients with liver diseases. J. Jpn. Soc. Intern. Med. 1979, 68, 1284–1292.

    Article  CAS  Google Scholar 

  122. Lee, J.; Ngo, J.; Blake, D.; Meinardi, S.; Pontello, A. M.; Newcomb, R.; Galassetti, P. R. Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J. Appl. Physiol. 2009, 107, 155–160.

    Article  CAS  Google Scholar 

  123. Miekisch, W.; Schubert, J. K.; Noeldge-Schomburg, G. F. E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39.

    Article  CAS  Google Scholar 

  124. Nakhleh, M. K.; Amal, H.; Awad, H.; Gharra, A.; Abu-Saleh, N.; Jeries, R.; Haick, H.; Abassi, Z. Sensor arrays based on nanoparticles for early detection of kidney injury by breath samples. Nanomedicine 2014, 10, 1767–1776.

    Article  CAS  Google Scholar 

  125. Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011, 5, 046008.

    Article  Google Scholar 

  126. Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, T.; Zelger, B.; Ager, C.; Klodzinska, E.; Denz, H.; Pizzini, A.; Lucciarini, P. et al. Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation of lung cancer-derived breath markers. J. Breath Res. 2014, 8, 027111.

    Article  CAS  Google Scholar 

  127. Rudnicka, J.; Walczak, M.; Kowalkowski, T.; Jezierski, T.; Buszewski, B. Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography-mass spectrometry versus trained dogs. Sens. Actuators B: Chem. 2014, 202, 615–621.

    Article  CAS  Google Scholar 

  128. Poli, D.; Goldoni, M.; Corradi, M.; Acampa, O.; Carbognani, P.; Internullo, E.; Casalini, A.; Mutti, A. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME—GC/MS. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2010, 878, 2643–2651.

    Article  CAS  Google Scholar 

  129. Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E. M.; Trefz, P.; Amann, A.; Schubert, J. K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644.

    Article  CAS  Google Scholar 

  130. Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G. A.; Amann, A. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 2007, 265, 49–59.

    Article  CAS  Google Scholar 

  131. Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933.

    Article  CAS  Google Scholar 

  132. Callol-Sanchez, L.; Munoz-Lucas, M. A.; Gomez-Martin, O.; Maldonado-Sanz, J. A.; Civera-Tejuca, C.; Gutierrez-Ortega, C.; Rodriguez-Trigo, G.; Jareno-Esteban, J. Observation of nonanoic acid and aldehydes in exhaled breath of patients with lung cancer. J. Breath Res. 2017, 11, 026004.

    Article  CAS  Google Scholar 

  133. Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N. Detection of lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123.

    Article  CAS  Google Scholar 

  134. Oguma, T.; Nagaoka, T.; Kurahashi, M.; Kobayashi, N.; Yamamori, S.; Tsuji, C.; Takiguchi, H.; Niimi, K.; Tomomatsu, H.; Tomomatsu, K. et al. Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer. PLoS One 2017, 12, e0174802.

    Article  Google Scholar 

  135. Phillips, M.; Altorki, N.; Austin, J. H. M.; Cameron, R. B.; Cataneo, R. N.; Greenberg, J.; Kloss, R.; Maxfield, R. A.; Munawar, M. I.; Pass, H. I. et al. Prediction of lung cancer using volatile biomarkers in breath. Cancer Biomark. 2007, 3, 95–109.

    Article  CAS  Google Scholar 

  136. D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176.

    Article  Google Scholar 

  137. Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M. et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348.

    Article  Google Scholar 

  138. Yu, H.; Xu, L.; Wang, P. Solid phase microextraction for analysis of alkanes and aromatic hydrocarbons in human breath. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2005, 826, 69–74.

    Article  CAS  Google Scholar 

  139. Fu, X. A.; Li, M. X.; Knipp, R. J.; Nantz, M. H.; Bousamra, M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med. 2014, 3, 174–181.

    Article  CAS  Google Scholar 

  140. Broza, Y. Y.; Har-Shai, L.; Jeries, R.; Cancilla, J. C.; Glass-Marmor, L.; Lejbkowicz, I.; Torrecilla, J. S.; Yao, X. L.; Feng, X. L.; Narita, A. et al. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis. ACS Chem. Neurosci. 2017, 8, 2402–2413.

    Article  CAS  Google Scholar 

  141. Ionescu, R.; Broza, Y.; Shaltieli, H.; Sadeh, D.; Zilberman, Y.; Feng, X. L.; Glass-Marmor, L.; Lejbkowicz, I.; Müllen, K.; Miller, A. et al. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes. ACS Chem. Neurosci. 2011, 2, 687–693.

    Article  CAS  Google Scholar 

  142. Tisch, U.; Aluf, Y.; Ionescu, R.; Nakhleh, M.; Bassal, R.; Axelrod, N.; Robertman, D.; Tessler, Y.; Finberg, J. P. M.; Haick, H. Detection of asymptomatic nigrostriatal dopaminergic lesion in rats by exhaled air analysis using carbon nanotube sensors. ACS Chem. Neurosci. 2012, 3, 161–166.

    Article  CAS  Google Scholar 

  143. Assady, S.; Marom, O.; Hemli, M.; Ionescu, R.; Jeries, R.; Tisch, U.; Abassi, Z.; Haick, H. Impact of hemodialysis on exhaled volatile organic compounds in end-stage renal disease: A pilot study. Nanomedicine 2014, 9, 1035–1045.

    Article  CAS  Google Scholar 

  144. Humad, S.; Zarling, E.; Clapper, M.; Skosey, J. L. Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radic. Res. Commun. 1988, 5, 101–106.

    Article  CAS  Google Scholar 

  145. Phillips, M.; Sabas, M.; Greenberg, J. Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J. Clin. Pathol. 1993, 46, 861–864.

    Article  CAS  Google Scholar 

  146. Wang, C. S.; Dong, R.; Wang, X. Y.; Lian, A. L.; Chi, C. J.; Ke, C. F.; Guo, L.; Liu, S. S.; Zhao, W.; Xu, G. W. et al. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation. Sci. Rep. 2014, 4, 7312.

    Article  Google Scholar 

  147. Di Lena, M.; Porcelli, F.; Altomare, D. F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Colorectal Dis. 2016, 18, 654–663.

    Article  CAS  Google Scholar 

  148. Macfarlane, G. T.; Cummings, J. H.; Macfarlane, S.; Gibson, G. R. Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J. Appl. Bacteriol. 1989, 67, 521–527.

    Article  CAS  Google Scholar 

  149. Woodmansey, E. J. Intestinal bacteria and ageing. J. Appl. Microbiol. 2007, 102, 1178–1186.

    Article  CAS  Google Scholar 

  150. Navaneethan, U.; Parsi, M. A.; Lourdusamy, D.; Grove, D.; Sanaka, M. R.; Hammel, J. P.; Vargo, J. J.; Dweik, R. A. Volatile organic compounds in urine for noninvasive diagnosis of malignant biliary strictures: A pilot study. Dig. Dis. Sci. 2015, 60, 2150–2157.

    Article  CAS  Google Scholar 

  151. Silva, C. L.; Passos, M.; Câmara, J. S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solidphase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904.

    Article  CAS  Google Scholar 

  152. Wang, D. C.; Wang, C. S.; Pi, X.; Guo, L.; Wang, Y.; Li, M. J.; Feng, Y.; Lin, Z. W.; Hou, W.; Li, E. Y. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma. Biomed. Rep. 2016, 5, 68–72.

    Article  CAS  Google Scholar 

  153. Silva, C. L.; Passos, M.; Câmara, J. S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—A powerful strategy for breast cancer diagnosis. Talanta 2012, 89, 360–368.

    Article  CAS  Google Scholar 

  154. Nam, H.; Chung, B. C.; Kim, Y.; Lee, K.; Lee, D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics 2009, 25, 3151–3157.

    Article  CAS  Google Scholar 

  155. Khalid, T.; Aggio, R.; White, P.; De Lacy Costello, B.; Persad, R.; Al-Kateb, H.; Jones, P.; Probert, C. S.; Ratcliffe, N. Urinary volatile organic compounds for the detection of prostate cancer. PLoS One 2015, 10, e0143283.

    Article  Google Scholar 

  156. Wang, M. G.; Xie, R. J.; Jia, X. B.; Liu, R. C. Urinary volatile organic compounds as potential biomarkers in idiopathic membranous nephropathy. Med Princ. Pract. 2017, 26, 375–380.

    Article  Google Scholar 

  157. Abaffy, T; Möller, M.; Riemer, D. D.; Milikowski, C.; DeFazio, R. A. A case report-volatile metabolomic signature of malignant melanoma using matching skin as a control. J. Cancer Sci. Ther. 2011, 3, 140–144.

    Article  Google Scholar 

  158. Abaffy, T.; Duncan, R.; Riemer, D. D.; Tietje, O.; Elgart, G.; Milikowski, C.; Defazio, R. A. Differential volatile signatures from skin, naevi and melanoma: A novel approach to detect a pathological process. PLoS One 2010, 5, e13813.

    Article  Google Scholar 

  159. Allardyce, R. A.; Hill, A. L.; Murdoch, D. R. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 2006, 55, 255–261.

    Article  CAS  Google Scholar 

  160. Boots, A. W.; Smolinska, A.; van Berkel, J. J. B. N.; Fijten, R. R. R.; Stobberingh, E. E.; Boumans, M. L. L.; Moonen, E. J.; Wouters, E. F. M.; Dallinga, J. W.; Van Schooten, F. J. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J. Breath Res. 2014, 8, 027106.

    Article  CAS  Google Scholar 

  161. Preti, G.; Thaler, E.; Hanson, C. W.; Troy, M.; Eades, J.; Gelperin, A. Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2009, 877, 2011–2018.

    Article  CAS  Google Scholar 

  162. Zscheppank, C.; Wiegand, H. L.; Lenzen, C.; Wingender, J.; Telgheder, U. Investigation of volatile metabolites during growth of Escherichia coli and Pseudomonas aeruginosa by needle trap-GC-MS. Anal. Bioanal. Chem. 2014, 406, 6617–6628.

    Article  CAS  Google Scholar 

  163. Kunze, N.; Göpel, J.; Kuhns, M.; Jünger, M.; Quintel, M.; Perl, T. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS). Appl. Microbiol. Biotechnol. 2013, 97, 3665–3676.

    Article  CAS  Google Scholar 

  164. Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2459–2467.

    Article  CAS  Google Scholar 

  165. Neerincx, A. H.; Geurts, B. P.; Habets, M. F. J.; Booij, J. A.; van Loon, J.; Jansen, J. J.; Buydens, L. M. C.; van Ingen, J.; Mouton, J. W.; Harren, F. J. M. et al. Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations. J. Breath Res. 2016, 10, 016002.

    Article  CAS  Google Scholar 

  166. Schöller, C.; Molin, S.; Wilkins, K. Volatile metabolites from some gram-negative bacteria. Chemosphere 1997, 35, 1487–1495.

    Article  Google Scholar 

  167. Filipiak, W.; Sponring, A.; Baur, M. M.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa. BMC Microbiol. 2012, 12, 113.

    Article  CAS  Google Scholar 

  168. Bean, H. D.; Dimandja, J. M. D.; Hill, J. E. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2012, 901, 41–46.

    Article  CAS  Google Scholar 

  169. Shestivska, V.; Španěl, P.; Dryahina, K.; Sovová, K.; Smith, D.; Musílek, M.; Nemec, A. Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. J. Appl. Microbiol. 2012, 113, 701–713.

    Article  CAS  Google Scholar 

  170. Carroll, W.; Lenney, W.; Wang, T. S.; Španěl, P.; Alcock, A.; Smith, D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr. Pulmonol. 2005, 39, 452–456.

    Article  Google Scholar 

  171. Yu, K. S.; Hamilton-Kemp, T. R.; Archbold, D. D.; Collins, R. W.; Newman, M. C. Volatile compounds from Escherichia coli O157:H7 and their absorption by strawberry fruit. J. Agric. Food Chem. 2000, 48, 413–417.

    Article  CAS  Google Scholar 

  172. Storer, M. K.; Hibbard-Melles, K.; Davis, B.; Scotter, J. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). J. Microbiol. Methods 2011, 87, 111–113.

    Article  CAS  Google Scholar 

  173. Maddula, S.; Blank, L. M.; Schmid, A.; Baumbach, J. I. Detection of volatile metabolites of Escherichia coli by multi capillary column coupled ion mobility spectrometry. Anal. Bioanal. Chem. 2009, 394, 791–800.

    Article  CAS  Google Scholar 

  174. Guamán, A. V.; Carreras, A.; Calvo, D.; Agudo, I.; Navajas, D.; Pardo, A.; Marco, S.; Farré, R. Rapid detection of sepsis in rats through volatile organic compounds in breath. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2012, 881–882, 76–82.

    Article  Google Scholar 

  175. Chippendale, T. W. E.; Španěl, P.; Smith, D. Time-resolved selected ion flow tube mass spectrometric quantification of the volatile compounds generated by E. coli JM109 cultured in two different media. Rapid Commun. Mass Spectrom. 2011, 25, 2163–2172.

    Article  CAS  Google Scholar 

  176. Bianchi, F.; Careri, M.; Mangia, A.; Mattarozzi, M.; Musci, M.; Concina, I.; Falasconi, M.; Gobbi, E.; Pardo, M.; Sberveglieri, G. Differentiation of the volatile profile of microbiologically contaminated canned tomatoes by dynamic headspace extraction followed by gas chromatography-mass spectrometry analysis. Talanta 2009, 77, 962–970.

    Article  CAS  Google Scholar 

  177. Umber, B. J.; Shin, H. W.; Meinardi, S.; Leu, S. Y.; Zaldivar, F.; Cooper, D. M.; Blake, D. R. Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood. Clin. Transl. Med. 2013, 2, 13.

    Article  Google Scholar 

  178. Elgaali, H.; Hamilton-Kemp, T. R.; Newman, M. C.; Collins, R. W.; Yu, K. S.; Archbold, D. D. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related gram positive and gram negative bacteria. J. Basic Microbiol. 2002, 42, 373–380.

    Article  CAS  Google Scholar 

  179. Zhu, J. J.; Bean, H. D.; Kuo, Y. M.; Hill, J. E. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J. Clin. Microbiol. 2010, 48, 4426–4431.

    Article  CAS  Google Scholar 

  180. Saranya, R.; Aarthi, R.; Sankaran, K. Simple and specific colorimetric detection of Staphylococcus using its volatile 2-[3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl] propanoic acid in the liquid phase and head space of cultures. Appl. Microbiol. Biotechnol. 2015, 99, 4423–4433.

    Article  CAS  Google Scholar 

  181. Martin, H. J.; Turner, M. A.; Bandelow, S.; Edwards, L.; Riazanskaia, S.; Thomas, C. L. P. Volatile organic compound markers of psychological stress in skin: A pilot study. J. Breath Res. 2016, 10, 046012.

    Article  CAS  Google Scholar 

  182. Ara, K.; Hama, M.; Akiba, S.; Koike, K.; Okisaka, K.; Hagura, T.; Kamiya, T.; Tomita, F. Foot odor due to microbial metabolism and its control. Can. J. Microbiol. 2006, 52, 357–364.

    Article  CAS  Google Scholar 

  183. Yamazaki, S.; Hoshino, K.; Kusuhara, M. Odor associated with aging. Anti-Aging Med. 2010, 7, 60–65.

    Article  Google Scholar 

  184. Gallagher, M.; Wysocki, C. J.; Leyden, J. J.; Spielman, A. I.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008, 159, 780–791.

    Article  CAS  Google Scholar 

  185. Abaffy, T.; Möller, M. G.; Riemer, D. D.; Milikowski, C.; DeFazio, R. A. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: A pilot study. Metabolomics 2013, 9, 998–1008.

    Article  CAS  Google Scholar 

  186. Campbell, L. F.; Farmery, L.; George, S. M. C.; Farrant, P. B. J. Canine olfactory detection of malignant melanoma. BMJ Case Rep. 2013, 2013, bcr2013008566.

    Article  Google Scholar 

  187. D’Amico, A.; Bono, R.; Pennazza, G.; Santonico, M.; Mantini, G.; Bernabei, M.; Zarlenga, M.; Roscioni, C.; Martinelli, E.; Paolesse, R. et al. Identification of melanoma with a gas sensor array. Skin Res. Technol. 2008, 14, 226–236.

    Article  Google Scholar 

  188. Kwak, J.; Gallagher, M.; Ozdener, M. H.; Wysocki, C. J.; Goldsmith, B. R.; Isamah, A.; Faranda, A.; Fakharzadeh, S. S.; Herlyn, M.; Johnson, A. T. C. et al. Volatile biomarkers from human melanoma cells. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 2013, 931, 90–96.

    Article  CAS  Google Scholar 

  189. Pickel, D.; Manucy, G. P.; Walker, D. B.; Hall, S. B.; Walker, J. C. Evidence for canine olfactory detection of melanoma. Appl. Anim. Behav. Sci. 2004, 89, 107–116.

    Article  Google Scholar 

  190. Dormont, L.; Bessière, J. M.; Cohuet, A. Human skin volatiles: A review. J. Chem. Ecol. 2013, 39, 569–578.

    Article  CAS  Google Scholar 

  191. Barzantny, H.; Schröder, J.; Strotmeier, J.; Fredrich, E.; Brune, I.; Tauch, A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J. Biotechnol. 2012, 159, 235–248.

    Article  CAS  Google Scholar 

  192. Marshall, J.; Holland, K. T.; Gribbon, E. M. A comparative study of the cutaneous microflora of normal feet with low and high levels of odour. J. Appl. Bacteriol. 1988, 65, 61–68.

    Article  CAS  Google Scholar 

  193. Natsch, A.; Derrer, S.; Flachsmann, F.; Schmid, J. A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chem. Biodivers. 2006, 3, 1–20.

    Article  CAS  Google Scholar 

  194. De Giovanni, N.; Fucci, N. The current status of sweat testing for drugs of abuse: A review. Curr. Med. Chem. 2013, 20, 545–561.

    CAS  Google Scholar 

  195. Holmberg, M.; Winquist, F.; Lundström, I.; Gardner, J. W.; Hines, E. L. Identification of paper quality using a hybrid electronic nose. Sens. Actuators B: Chem. 1995, 27, 246–249.

    Article  CAS  Google Scholar 

  196. Ulmer, H.; Mitrovics, J.; Noetzel, G.; Weimar, U.; Göpel, W. Odours and flavours identified with hybrid modular sensor systems. Sens. Actuators B: Chem. 1997, 43, 24–33.

    Article  CAS  Google Scholar 

  197. Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R. Data analysis for a hybrid sensor array. Sens. Actuators B: Chem. 2005, 106, 136–143.

    Article  CAS  Google Scholar 

  198. Li, C. L.; Chen, Y. F.; Liu, M. H.; Lu, C. J. Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection. Sens. Actuators B: Chem. 2012, 169, 349–359.

    Article  CAS  Google Scholar 

  199. Lu, H. L.; Lu, C. J.; Tian, W. C.; Sheen, H. J. A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays. Talanta 2015, 131, 467–474.

    Article  CAS  Google Scholar 

  200. Zetola, N. M.; Modongo, C.; Matsiri, O.; Tamuhla, T.; Mbongwe, B.; Matlhagela, K.; Sepako, E.; Catini, A.; Sirugo, G.; Martinelli, E. et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J. Infect. 2017, 74, 367–376.

    Article  Google Scholar 

  201. Cho, Y. S.; Jung, S. C.; Oh, S. Diagnosis of bovine tuberculosis using a metal oxide-based electronic nose. Lett. Appl. Microbiol. 2015, 60, 513–516.

    Article  CAS  Google Scholar 

  202. Wu, C. S.; Du, L. P.; Wang, D.; Zhao, L. H.; Wang, P. A biomimetic olfactory-based biosensor with high efficiency immobilization of molecular detectors. Biosens. Bioelectron. 2012, 31, 44–48.

    Article  CAS  Google Scholar 

  203. Chen, X.; Cao, M. F.; Li, Y.; Hu, W. J.; Wang, P.; Ying, K. J.; Pan, H. M. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas. Sci. Technol. 2005, 16, 1535–1546.

    Article  CAS  Google Scholar 

  204. Mazzone, P. J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568.

    Article  Google Scholar 

  205. Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S. Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 2006, 78, 3591–3600.

    Article  CAS  Google Scholar 

  206. Vincent, T. A.; Gardner, J. W. A low cost MEM based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels. Sens. Actuators B: Chem. 2016, 236, 954–964.

    Article  CAS  Google Scholar 

  207. Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598.

    Article  CAS  Google Scholar 

  208. Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for chemical sensor applications. Chem. Rev. 2017, 117, 2517–2583.

    Article  CAS  Google Scholar 

  209. Shehada, N.; Cancilla, J. C.; Torrecilla, J. S.; Pariente, E. S.; Brönstrup, G.; Christiansen, S.; Johnson, D. W.; Leja, M.; Davies, M. P. A.; Liran, O. et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 2016, 10, 7047–7057.

    Article  CAS  Google Scholar 

  210. Cao, L. A.; Yao, M. S.; Jiang, H. J.; Kitagawa, S.; Ye, X. L.; Li, W. H.; Xu, G. A highly oriented conductive MOF thin film-based Schottky diode for self-powered light and gas detection. J. Mater. Chem. A 2020, 8, 9085–9090.

    Article  CAS  Google Scholar 

  211. Yuan, H. Y.; Tao, J. F.; Li, N. X.; Karmakar, A.; Tang, C. H.; Cai, H.; Pennycook, S. J.; Singh, N.; Zhao, D. On-chip tailorability of capacitive gas sensors integrated with metal-organic framework films. Angew. Chem., Int. Ed. 2019, 58, 14089–14094.

    Article  CAS  Google Scholar 

  212. Sun, Z. B.; Yu, S. H.; Zhao, L. L.; Wang, J. F.; Li, Z. F.; Li, G. A highly stable two-dimensional copper (II) organic framework for proton conduction and ammonia impedance sensing. Chem. Eur. J. 2018, 24, 10829–10839.

    Article  CAS  Google Scholar 

  213. Yao, M. S.; Li, W. H.; Xu, G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021, 426, 213479.

    Article  CAS  Google Scholar 

  214. Pauling, L.; Robinson, A. B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas—liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376.

    Article  CAS  Google Scholar 

  215. Amal, H.; Haick, H. Point of care breath analysis systems. In Advanced Nanomaterials for Inexpensive Gas Microsensors. Llobet, E., Ed.; Elsevier: Cambridge, MA, 2020; pp 315–334.

    Chapter  Google Scholar 

  216. Nakhleh, M. K.; Badarny, S.; Winer, R.; Jeries, R.; Finberg, J.; Haick, H. Distinguishing idiopathic Parkinson’s disease from other parkinsonian syndromes by breath test. Parkinsonism Relat. Disord. 2015, 21, 150–153.

    Article  CAS  Google Scholar 

  217. Nardi-Agmon, I.; Abud-Hawa, M.; Liran, O.; Gai-Mor, N.; Ilouze, M.; Onn, A.; Bar, J.; Shlomi, D.; Haick, H.; Peled, N. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J. Thorac. Oncol. 2016, 11, 827–837.

    Article  Google Scholar 

  218. Kim, S. J.; Choi, S. J.; Jang, J. S.; Cho, H. J.; Kim, I. D. Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 2017, 50, 1587–1596.

    Article  CAS  Google Scholar 

  219. Schuermans, V. N. E.; Li, Z. Y.; Jongen, A. C. H. M.; Wu, Z. Q.; Shi, J. Y.; Ji, J. F.; Bouvy, N. D. Pilot study: Detection of gastric cancer from exhaled air analyzed with an electronic nose in Chinese patients. Surg. Innov. 2018, 25, 429–434.

    Article  Google Scholar 

  220. Hanson, C. W. 3rd; Thaler, E. R. Electronic nose prediction of a clinical pneumonia score: Biosensors and microbes. Anesthesiology 2005, 102, 63–68.

    Article  Google Scholar 

  221. Kateb, B.; Ryan, M. A.; Homer, M. L.; Lara, L. M.; Yin, Y. F.; Higa, K.; Chen, M. Y. Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. NeuroImage 2009, 47, T5–T9.

    Article  Google Scholar 

  222. Wu, A. Q.; Wang, W. Q.; Zhan, H. B.; Cao, L. A.; Ye, X. L.; Zheng, J. J.; Kumar, P. N.; Chiranjeevulu, K.; Deng, W. H.; Wang, G. E. et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2021, 14, 438–443.

    Article  CAS  Google Scholar 

  223. Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem. 2015, 127, 4423–4426.

    Article  Google Scholar 

  224. Stolz, R. M.; Mahdavi-Shakib, A.; Frederick, B. G.; Mirica, K. A. Host-guest interactions and redox activity in layered conductive metal-organic frameworks. Chem. Mater. 2020, 32, 7639–7652.

    Article  CAS  Google Scholar 

  225. Yao, M. S.; Zheng, J. J.; Wu, A. Q.; Xu, G.; Nagarkar, S. S.; Zhang, G.; Tsujimoto, M.; Sakaki, S.; Horike, S.; Otake, K. et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed. 2020, 59, 172–176.

    Article  CAS  Google Scholar 

  226. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Article  Google Scholar 

  227. Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C. Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater. 2016, 3, 025002.

    Article  Google Scholar 

  228. Cho, S. Y.; Koh, H. J.; Yoo, H. W.; Jung, H. T. Tunable chemical sensing performance of black phosphorus by controlled functionalization with noble metals. Chem. Mater. 2017, 29, 7197–7205.

    Article  CAS  Google Scholar 

  229. Yao, M. S.; Otake, K. I.; Xue, Z. Q.; Kitagawa, S. Concluding remarks: Current and next generation MOFs. Faraday Discuss. 2021, 231, 397–417.

    Article  CAS  Google Scholar 

  230. Yao, M. S.; Wang, P.; Gu, Y. F.; Koganezawa, T.; Ashitani, H.; Kubota, Y.; Wang, Z. M.; Fan, Z. Y.; Otake, K. I.; Kitagawa, S. A comparative study of honeycomb-like 2D π-conjugated metal-organic framework chemiresistors: Conductivity and channels. Dalton Trans. 2021, 50, 13236–13245.

    Article  CAS  Google Scholar 

  231. Meng, Z.; Stolz, R. M.; Mirica, K. A. Two-dimensional chemiresistive covalent organic framework with high intrinsic conductivity. J. Am. Chem. Soc. 2019, 141, 11929–11937.

    Article  CAS  Google Scholar 

  232. Zhang, H. H.; Gu, C.; Yao, M. S.; Kitagawa, S. Hybridization of emerging crystalline porous materials: Synthesis dimensionality and electrochemical energy storage application. Adv. Energy Mater. 2022, 12, 2100321.

    Article  CAS  Google Scholar 

  233. Jian, Y. Y.; Qu, D. Y.; Guo, L. H.; Zhu, Y. J.; Su, C.; Feng, H. R.; Zhang, G. J.; Zhang, J.; Wu, W. W.; Yao, M. S. The prior rules of designing Ti3C2Tx MXene-based gas sensors. Front. Chem. Sci. Eng. 2021, 15, 505–517.

    Article  CAS  Google Scholar 

  234. Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

    Article  CAS  Google Scholar 

  235. Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

    Article  CAS  Google Scholar 

  236. Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

    Article  CAS  Google Scholar 

  237. Yao, M. S.; Tang, W. X.; Wang, G. E.; Nath, B.; Xu, G. MOF thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229–5234.

    Article  CAS  Google Scholar 

  238. Lei, G. L.; Lou, C. M.; Liu, X. H.; Xie, J. Y.; Li, Z. S.; Zheng, W.; Zhang, J. Thin films of tungsten oxide materials for advanced gas sensors. Sens. Actuator B: Chem. 2021, 341, 129996.

    Article  CAS  Google Scholar 

  239. Liu, X. H.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 2022, 462, 214517.

    Article  CAS  Google Scholar 

  240. Lou, C. M.; Lei, G. L.; Liu, X. H.; Xie, J. Y.; Li, Z. S.; Zheng, W.; Goel, N.; Kumar, M.; Zhang, J. Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord. Chem. Rev. 2022, 452, 214280.

    Article  CAS  Google Scholar 

  241. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    Article  CAS  Google Scholar 

  242. Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

    Article  Google Scholar 

  243. Xu, K.; Fu, C.; Gao, Z.; Wei, F.; Ying, Y.; Xu, C.; Fu, G. Nanomaterial-based gas sensors: A review. Instrum. Sci. Technol. 2018, 46, 115–145.

    Article  Google Scholar 

  244. Jin, C. G.; Kurzawski, P.; Hierlemann, A.; Zellers, E. T. Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal. Chem. 2008, 80, 227–236.

    Article  CAS  Google Scholar 

  245. Jin, C. G.; Zellers, E. T. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays. Anal. Chem. 2008, 80, 7283–7293.

    Article  CAS  Google Scholar 

  246. Gutierrez-Osuna, R.; Hierlemann, A. Adaptive microsensor systems. Annu. Rev. Anal. Chem. 2010, 3, 255–276.

    Article  CAS  Google Scholar 

  247. Li, Z.; Askim, J. R.; Suslick, K. S. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chem. Rev. 2019, 119, 231–292.

    Article  CAS  Google Scholar 

  248. Zhao, S. X.; Lei, J. C.; Huo, D. Q; Hou, C. J.; Luo, X. G.; Wu, H. X.; Fa, H. B.; Yang, M. A colorimetric detector for lung cancer related volatile organic compounds based on cross-response mechanism. Sens. Actuators B: Chem. 2018, 256, 543–552.

    Article  CAS  Google Scholar 

  249. Lei, J. C.; Hou, C. J.; Huo, D. Q.; Luo, X. G.; Bao, M. Z.; Li, X.; Yang, M.; Fa, H. B. A novel device based on a fluorescent cross-responsive sensor array for detecting lung cancer related volatile organic compounds. Rev. Sci. Instrum. 2015, 86, 025106.

    Article  Google Scholar 

  250. Hou, C. J.; Lei, J. C.; Huo, D. Q.; Song, K.; Li, J. J.; Luo, X. G.; Yang, M.; Fa, H. B. Discrimination of lung cancer related volatile organic compounds with a colorimetric sensor array. Anal. Lett. 2013, 46, 2048–2059.

    Article  CAS  Google Scholar 

  251. Huo, D. Q.; Xu, Y. H.; Hou, C. J.; Yang, M.; Fa, H. B. A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification. Sens. Actuators B: Chem. 2014, 199, 446–456.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Numerical Windtunnel Project (No. NNW2020ZT2-A21), Marie Sklodowska-Curie Actions: Individual Fellowship (No. H2020-MSCA-IF) [898486], Key Research and Development Program of Shaanxi (Nos. 2022ZDLSF01-04 and 2020GXLH-Y-012), the National Natural Science Foundation of China (No. 81972488), and the Shenzhen Science and Technology Program (No. JCYJ20210324115209026).

Author information

Author notes
  1. Wenwen Hu, Weiwei Wu, and Yingying Jian contributed equally to this work.

Authors and Affiliations

  1. School of Aerospace Science and Technology, Xidian University, Xi’an, 730107, China

    Wenwen Hu

  2. Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107, China

    Weiwei Wu & Yingying Jian

  3. Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002, Israel

    Hossam Haick

  4. Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China

    Guangjian Zhang

  5. Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China

    Yun Qian

  6. The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China

    Miaomiao Yuan

  7. State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006, China

    Mingshui Yao

  8. Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan

    Mingshui Yao

Authors
  1. Wenwen Hu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Weiwei Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yingying Jian
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hossam Haick
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Guangjian Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Yun Qian
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Miaomiao Yuan
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Mingshui Yao
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Yun Qian, Miaomiao Yuan or Mingshui Yao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Wu, W., Jian, Y. et al. Volatolomics in healthcare and its advanced detection technology. Nano Res. 15, 8185–8213 (2022). https://doi.org/10.1007/s12274-022-4459-3

Download citation

  • Received: 31 March 2022

  • Revised: 18 April 2022

  • Accepted: 20 April 2022

  • Published: 29 June 2022

  • Issue Date: September 2022

  • DOI: https://doi.org/10.1007/s12274-022-4459-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • volatolomics
  • electronic nose
  • disease diagnosis
  • sensor
  • artificial olfaction
  • volatile organic compounds
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.