Skip to main content
Log in

Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With increasing work pressure in modern society, prolonged sedentary positions with poor sitting postures can cause physical and psychological problems, including obesity, muscular disorders, and myopia. In this paper, we present a self-powered sitting position monitoring vest (SPMV) based on triboelectric nanogenerators (TENGs) to achieve accurate real-time posture recognition through an integrated machine learning algorithm. The SPMV achieves high sensitivity (0.16 mV/Pa), favorable stretchability (10%), good stability (12,000 cycles), and machine washability (10 h) by employing knitted double threads interlaced with conductive fiber and nylon yarn. Utilizing a knitted structure and sensor arrays that are stitched into different parts of the clothing, the SPMV offers a non-invasive method of recognizing different sitting postures, providing feedback, and warning users while enhancing long-term wearing comfortability. It achieves a posture recognition accuracy of 96.6% using the random forest classifier, which is higher than the logistic regression (95.5%) and decision tree (94.3%) classifiers. The TENG-based SPMV offers a reliable solution in the healthcare system for non-invasive and long-term monitoring, promoting the development of triboelectric-based wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rau, T. R.; Plaschke, K.; Weigand, M. A.; Maier, C.; Schramm, C. Automatic detection of venous air embolism using transesophageal echocardiography in patients undergoing neurological surgery in the semi-sitting position: A pilot study. J. Clin. Monit. Comput. 2021, 35, 1103–1109.

    Article  Google Scholar 

  2. Li, F. K.; Sheng, C. S.; Zhang, D. Y.; An, D. W.; Huang, J. F.; Li, Y.; Wang, J. G. Resting heart rate in the supine and sitting positions as predictors of mortality in an elderly Chinese population. J. Hypertens. 2019, 37, 2024–2031.

    Article  CAS  Google Scholar 

  3. Liutkus, D.; Gouraud, J. P.; Blanloeil, Y.; ANARLF. The sitting position in neurosurgical anaesthesia: A survey of French practice. Ann. Fr. Anesth. Reanim. 2003, 22, 296–300.

    Article  CAS  Google Scholar 

  4. Wu, C. C.; Chiu, C. C.; Yeh, C. Y. Development of wearable posture monitoring system for dynamic assessment of sitting posture. Phys. Eng. Sci. Med. 2020, 43, 187–203.

    Article  Google Scholar 

  5. Roh, J.; Park, H. J.; Lee, K. J.; Hyeong, J.; Kim, S.; Lee, B. Sitting posture monitoring system based on a low-cost load cell using machine learning. Sensors 2018, 18, 208.

    Article  Google Scholar 

  6. Kim, Y. M.; Son, Y.; Kim, W.; Jin, B.; Yun, M. H. Classification of children’s sitting postures using machine learning algorithms. Appl. Sci. 2018, 8, 1280.

    Article  Google Scholar 

  7. Chang, I. S.; Mak, S.; Armanfard, N.; Boger, J.; Grace, S. L.; Arcelus, A.; Chessex, C.; Mihailidis, A. Quantification of resting-state ballistocardiogram difference between clinical and non-clinical populations for ambient monitoring of heart failure. IEEE J. Transl. Eng. Health Med. 2020, 8, 2700811.

    Article  Google Scholar 

  8. Zhang, C.; Fan, Y. J.; Li, H. Y.; Li, Y. Y.; Zhang, L.; Cao, S. B.; Kuang, S. Y.; Zhao, Y. B.; Chen, A. H.; Zhu, G. et al. Fully rollable lead-free poly (vinylidene fluoride)-niobate-based nanogenerator with ultra-flexible nano-network electrodes. ACS Nano 2018, 12, 4803–4811.

    Article  CAS  Google Scholar 

  9. Ning, C.; Dong, K.; Gao, W. C.; Sheng, F. F.; Cheng, R. W.; Jiang, Y.; Yi, J.; Ye, C. Y.; Peng, X.; Wang, Z. L. Dual-mode thermal-regulating and self-powered pressure sensing hybrid smart fibers. Chem. Eng. J. 2021, 420, 129650.

    Article  CAS  Google Scholar 

  10. Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS. Appl. Mater. Interfaces 2021, 13, 11205–11214.

    Article  CAS  Google Scholar 

  11. Dong, K.; Hu, Y. F.; Yang, J.; Kim, S. W.; Hu, W. G.; Wang, Z. L. Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bull. 2021, 46, 512–521.

    Article  CAS  Google Scholar 

  12. Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

    Article  CAS  Google Scholar 

  13. Li, L. L.; Wang, D. P.; Zhang, D.; Ran, W. H.; Yan, Y. X.; Li, Z. X.; Wang, L. L.; Shen, G. Z. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Mater. 2021, 31, 2104782.

    Article  CAS  Google Scholar 

  14. Wang, D. Y.; Wang, L. L.; Shen, G. Z. Nanofiber/nanowires-based flexible and stretchable sensors. J. Semicond. 2020, 41, 041605.

    Article  CAS  Google Scholar 

  15. Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

    Article  Google Scholar 

  16. Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

    Article  CAS  Google Scholar 

  17. Jiang, Q.; Yuan, H. L.; Dong, K.; Lin, J. H.; Wu, L. W.; Tang, Y. H. Continuous and scalable manufacture of aggregation induced emission luminogen fibers for anti-counterfeiting and hazardous gas detecting smart textiles. Mater. Des. 2021, 205, 109761.

    Article  CAS  Google Scholar 

  18. Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y. Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 2017, 8, 15894.

    Article  CAS  Google Scholar 

  19. Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016, 28, 930–935.

    Article  CAS  Google Scholar 

  20. Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

    Article  CAS  Google Scholar 

  21. Roh, E.; Hwang, B. U.; Kim, D.; Kim, B. Y.; Lee, N. E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261.

    Article  CAS  Google Scholar 

  22. Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913.

    Article  CAS  Google Scholar 

  23. Liu, Y.; Hu, Y.; Zhao, J. J.; Wu, G.; Tao, X. M.; Chen, W. Self-powered piezoionic strain sensor toward the monitoring of human activities. Small 2016, 12, 5074–5080.

    Article  CAS  Google Scholar 

  24. Ahmad, J.; Andersson, H.; Sidén, J. Screen-printed piezoresistive sensors for monitoring pressure distribution in wheelchair. IEEE Sens. J. 2019, 19, 2055–2063.

    Article  CAS  Google Scholar 

  25. Salvatore, G. A.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Zysset, C.; Strebel, I.; Büthe, L.; Tröster, G. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 2014, 5, 2982.

    Article  Google Scholar 

  26. Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

    Article  CAS  Google Scholar 

  27. Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q.; Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N. et al. D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater 2016, 28, 9713–9721.

    Article  CAS  Google Scholar 

  28. Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

    Article  CAS  Google Scholar 

  29. Pang, C.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M. G.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B. H.; Bao, Z. N. Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 2015, 27, 634–640.

    Article  CAS  Google Scholar 

  30. Lai, Y. C.; Deng, J. N.; Zhang, S. L.; Niu, S. M.; Guo, H. Y.; Wang, Z. L. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv. Funct. Mater. 2017, 27, 1604462.

    Article  Google Scholar 

  31. Jeong, J. W.; Kim, M. K.; Cheng, H. Y.; Yeo, W. H.; Huang, X.; Liu, Y.; Zhang, Y.; Huang, Y.; Rogers, J. A. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 2014, 3, 642–658.

    Article  CAS  Google Scholar 

  32. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  33. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  34. Wang, Z. L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502.

    Article  CAS  Google Scholar 

  35. Wang, Z. L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020, 68, 104272.

    Article  CAS  Google Scholar 

  36. Luo, J. J.; Wang, Z. L. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Mater. 2019, 23, 617–628.

    Article  Google Scholar 

  37. Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater 2017, 29, 1702468.

    Article  Google Scholar 

  38. Cong, Z. F.; Guo, W. B.; Guo, Z. H.; Chen, Y. H.; Liu, M. M.; Hou, T. T.; Pu, X.; Hu, W. G.; Wang, Z. L. Stretchable coplanar self-charging power textile with resist-dyeing triboelectric nanogenerators and microsupercapacitors. ACS Nano 2020, 14, 5590–5599.

    Article  CAS  Google Scholar 

  39. Gunawardhana, K. R. S. D.; Wanasekara, N. D.; Dharmasena, R. D. I. G. Towards truly wearable systems: Optimizing and scaling up wearable triboelectric nanogenerators. iScience 2020, 23, 101360.

    Article  CAS  Google Scholar 

  40. Li, C. Y.; Liu, D.; Xu, C. Q.; Wang, Z. M.; Shu, S.; Sun, Z. R.; Tang, W.; Wang, Z. L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 2021, 12, 2950.

    Article  CAS  Google Scholar 

  41. Petropoulos, A.; Sikeridis, D.; Antonakopoulos, T. Wearable smart health advisors: An IMU-enabled posture monitor. IEEE Consum. Electron. Mag. 2020, 9, 20–27.

    Article  Google Scholar 

  42. Kim, W.; Jin, B.; Choo, S.; Nam, C. S.; Yun, M. H. Designing of smart chair for monitoring of sitting posture using convolutional neural networks. Data Technol. Appl. 2019, 53, 142–155.

    Google Scholar 

  43. Jung, Y. H.; Hong, S. K.; Wang, H. S.; Han, J. H.; Pham, T. X.; Park, H.; Kim, J.; Kang, S.; Yoo, C. D.; Lee, K. J. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020.

    Article  CAS  Google Scholar 

  44. Ran, X.; Wang, C.; Xiao, Y.; Gao, X. L.; Zhu, Z. Y.; Chen, B. A portable sitting posture monitoring system based on a pressure sensor array and machine learning. Sens. Actuators A 2021, 331, 112900.

    Article  CAS  Google Scholar 

  45. Loke, G.; Khudiyev, T.; Wang, B.; Fu, S.; Payra, S.; Shaoul, Y.; Fung, J.; Chatziveroglou, I.; Chou, P. W.; Chinn, I. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 2021, 12, 3317.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the National Key R&D Program of China (No. 2021YFA1201601), the National Natural Science Foundation of China (No. 22109012), Natural Science Foundation of Beijing (No. 2212052), and the Fundamental Research Funds for the Central Universities (No. E1E46805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Dong or Zhong Lin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., An, J., Liang, F. et al. Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction. Nano Res. 15, 8389–8397 (2022). https://doi.org/10.1007/s12274-022-4409-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4409-0

Keywords

Navigation