Skip to main content

Advertisement

Log in

Nanostructural origins of irreversible deformation in bone revealed by an in situ atomic force microscopy study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The structural origins of bone toughness at the nanoscale are not completely understood. Therefore, we performed in situ scanning using atomic force microscopy during macroscopic mechanical testing of antler and bovine bone, to reveal the origins of the irreversible plastic deformation at the mineralized collagen fibril (MCF) array and MCF levels. We found that the plastic deformation behavior at the nanoscale level could be divided into two stages. The first stage of plastic deformation at the nanoscale level was characterized by slippage between the MCF arrays, which contained mineral aggregate grains with regular shapes under load. In the second stage of nanoscale plastic deformation, the MCFs broke through the bonds of the extrafibrillar mineral aggregate grains and exhibited interfibrillar slippage. These nanoscale plastic deformation behaviors may thus be the origins of stress whitening and irreversible plastic deformation. Thus, the findings in this study not only shed light on the plastic deformation mechanisms of MCF arrays and MCFs, but also provide structural and mechanistic insights into bioinspired materials design and mechanisms of relevant bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritchie, R. O.; Buehler, M. J.; Hansma, P. Plasticity and toughness in bone. Phys. Today 2009, 62, 41–47.

    Article  CAS  Google Scholar 

  2. Morsali, R.; Dai, Z. W.; Wang, Y.; Qian, D.; Minary-Jolandan, M. Deformation mechanisms of “two-part” natural adhesive in bone interfibrillar nano-interfaces. ACS Biomater. Sci. Eng. 2019, 5, 5916–5924.

    Article  CAS  Google Scholar 

  3. Nyman, J. S.; Roy, A.; Reyes, M. J.; Wang, X. D. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J. Biomed. Mater. Res. Part A 2009, 89A, 521–529.

    Article  CAS  Google Scholar 

  4. Nyman, J. S.; Leng, H. J.; Dong, X. N.; Wang, X. D. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. J. Mech. Behav. Biomed. Mater. 2009, 2, 613–619.

    Article  Google Scholar 

  5. Wang, X. D.; Nyman, J. S. A novel approach to assess post-yield energy dissipation of bone in tension. J. Biomech. 2007, 40, 674–677.

    Article  Google Scholar 

  6. Nyman, J. S.; Roy, A.; Tyler, J. H.; Acuna, R. L.; Gayle, H. J.; Wang, X. D. Age-related factors affecting the postyield energy dissipation of human cortical bone. J. Orthop. Res. 2007, 25, 646–655.

    Article  Google Scholar 

  7. De Falco, P.; Barbieri, E.; Pugno, N.; Gupta, H. S. Staggered fibrils and damageable interfaces lead concurrently and independently to hysteretic energy absorption and inhomogeneous strain fields in cyclically loaded antler bone. ACS Biomater. Sci. Eng. 2017, 3, 2779–2787.

    Article  CAS  Google Scholar 

  8. Nalla, R. K.; Kinney, J. H.; Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2003, 2, 164–168.

    Article  CAS  Google Scholar 

  9. Vashishth, D.; Behiri, J. C.; Bonfield, W. Crack growth resistance in cortical bone: Concept of microcrack toughening. J. Biomech. 1997, 30, 763–769.

    Article  CAS  Google Scholar 

  10. Vashishth, D.; Tanner, K. E.; Bonfield, W. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 2003, 36, 121–124.

    Article  CAS  Google Scholar 

  11. Gupta, H. S.; Krauss, S.; Kerschnitzki, M.; Karunaratne, A.; Dunlop, J. W. C.; Barber, A. H.; Boesecke, P.; Funari, S. S.; Fratzl, P. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J. Mech. Behav. Biomed. Mater. 2013, 28, 366–382.

    Article  CAS  Google Scholar 

  12. Krauss, S.; Fratzl, P.; Seto, J.; Currey, J. D.; Estevez, J. A.; Funari, S. S.; Gupta, H. S. Inhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism. Bone 2009, 44, 1105–1110.

    Article  Google Scholar 

  13. Weiner, S.; Wagner, H. D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298.

    Article  CAS  Google Scholar 

  14. Tai, K.; Ulm, F. J.; Ortiz, C. Nanogranular origins of the strength of bone. Nano Lett. 2006, 6, 2520–2525.

    Article  CAS  Google Scholar 

  15. Hang, F.; Barber, A. H. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J. Roy. Soc. Interface 2010, 8, 500–505.

    Article  Google Scholar 

  16. Buehler, M. J. Molecular nanomechanics of nascent bone: Fibrillar toughening by mineralization. Nanotechnology 2000, 18, 295102.

    Article  Google Scholar 

  17. Gupta, H. S.; Wagermaier, W.; Zickler, G. A.; Aroush, D. R. B.; Funari, S. S.; Roschger, P.; Wagner, H. D.; Fratzl, P. Nanoscale deformation mechanisms in bone. Nano Lett. 2005, 5, 2108–2111.

    Article  CAS  Google Scholar 

  18. Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl, P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. USA 2006, 103, 17741–17746.

    Article  CAS  Google Scholar 

  19. Lin, L. Q.; Samuel, J.; Zeng, X. W.; Wang, X. D. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J. Mech. Behav. Biomed. Mater. 2017, 65, 224–235.

    Article  CAS  Google Scholar 

  20. Groetsch, A.; Gourrier, A.; Schwiedrzik, J.; Sztucki, M.; Beck, R. J.; Shephard, J. D.; Michler, J.; Zysset, P. K.; Wolfram, U. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale. Acta Biomater. 2019, 89, 313–329.

    Article  CAS  Google Scholar 

  21. Katsamenis, O. L.; Chong, H. M. H.; Andriotis, O. G.; Thurner, P. J. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. J. Mech. Behav. Biomed. Mater. 2013, 17, 152–165.

    Article  CAS  Google Scholar 

  22. Maghsoudi-Ganjeh, M.; Samuel, J.; Ahsan, A. S.; Wang, X. D.; Zeng, X. W. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J. Mech. Behav. Biomed. Mater. 2021, 117, 104377.

    Article  CAS  Google Scholar 

  23. Wang, Y. H.; Ural, A. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior. J. Biomech. 2018, 66, 70–77.

    Article  Google Scholar 

  24. Wang, Y. H.; Ural, A. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone. J. Mech. Behav. Biomed. Mater. 2018, 82, 18–26.

    Article  CAS  Google Scholar 

  25. Wang, Y. H.; Ural, A. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae. J. Biomech. 2020, 112, 110041.

    Article  Google Scholar 

  26. Wang, Y.; Ural, A. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. J. Mech. Behav. Biomed. Mater. 2019, 100, 103361.

    Article  CAS  Google Scholar 

  27. Fang, M.; Goldstein, E. L.; Turner, A. S.; Les, C. M.; Orr, B. G.; Fisher, G. J.; Welch, K. B.; Rothman, E. D.; Holl, M. M. B. Type I collagen D-spacing in fibril bundles of dermis, tendon, and bone: Bridging between nano- and micro-level tissue hierarchy. ACS Nano 2012, 6, 9503–9514.

    Article  CAS  Google Scholar 

  28. Zhao, H. X.; Jin, H.; Cai, J. Y.; Ding, S. The process of collagen biomineralization observed by AFM in a model dual membrane diffusion system. Ultramicroscopy 2010, 110, 1306–1311.

    Article  CAS  Google Scholar 

  29. Balooch, M.; Habelitz, S.; Kinney, J. H.; Marshall, S. J.; Marshall, G. W. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 2008, 162, 404–410.

    Article  CAS  Google Scholar 

  30. Xu, Z. H.; Li, X. D. Deformation strengthening of biopolymer in nacre. Adv. Funct. Mater. 2011, 21, 3883–3888.

    Article  CAS  Google Scholar 

  31. Grégoire, D.; Loh, O.; Juster, A.; Espinosa, H. D. In-situ AFM experiments with discontinuous DIC applied to damage identification in biomaterials. Exp. Mech. 2011, 51, 591–607.

    Article  Google Scholar 

  32. Seshadri, I. P.; Bhushan, B. In situ tensile deformation characterization of human hair with atomic force microscopy. Acta Mater. 2008, 56, 774–781.

    Article  CAS  Google Scholar 

  33. Lin, Z. X.; Xu, Z. H.; An, Y. H.; Li, X. D. In situ observation of fracture behavior of canine cortical bone under bending. Mater. Sci. Eng.:C 2016, 62, 361–367.

    Article  CAS  Google Scholar 

  34. Qian, T. B.; Chen, X. X.; Hang, F.; Zhuang, J.; Chen, X. F. Ordered fibril arrays in osteons promote the multidirectional nanodeflection of cracks: In situ AFM imaging. ACS Biomater. Sci. Eng. 2021, 7, 2372–2382.

    Article  CAS  Google Scholar 

  35. Chen, X. X.; Qian, T. B.; Hang, F.; Chen, X. F. Water promotes the formation of fibril bridging in antler bone illuminated by in situ AFM testing. J. Mech. Behav. Biomed. Mater. 2021, 120, 104580.

    Article  CAS  Google Scholar 

  36. Qian, T. B.; Chen, X. X.; Hang, F. Investigation of nanoscale failure behaviour of cortical bone under stress by AFM. J. Mech. Behav. Biomed. Mater. 2020, 112, 103989.

    Article  CAS  Google Scholar 

  37. Shen, L.; Liu, T. X.; Lv, P. F. Polishing effect on nanoindentation behavior of nylon 66 and its nanocomposites. Polym. Test. 2005, 24, 746–749.

    Article  Google Scholar 

  38. Zioupos, P.; Wang, X. T.; Currey, J. D. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 1996, 29, 989–1002.

    Article  CAS  Google Scholar 

  39. Currey, J. D.; Landete-Castillejos, T.; Estevez, J.; Ceacero, F.; Olguin, A.; Garcia, A.; Gallego, L. The mechanical properties of red deer antler bone when used in fighting. J. Exp. Biol. 2009, 212, 3985–3993.

    Article  CAS  Google Scholar 

  40. Hardisty, M. R.; Garcia, T. C.; Choy, S.; Dahmubed, J.; Stover, S. M.; Fyhrie, D. P. Stress-whitening occurs in demineralized bone. Bone 2013, 57, 367–374.

    Article  CAS  Google Scholar 

  41. Currey, J. D. Bones: Structure and Mechanics; Princeton University Press: Princeton, 2002.

    Book  Google Scholar 

  42. Sun, X. B.; Hoon Jeon, J.; Blendell, J.; Akkus, O. Visualization of a phantom post-yield deformation process in cortical bone. J. Biomech. 2010, 43, 1989–1996.

    Article  CAS  Google Scholar 

  43. Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.

    Article  Google Scholar 

  44. Zhou, C.; Zhang, X. L.; Ai, J.; Ji, T.; Nagai, M.; Duan, Y. Y.; Che, S. A.; Han, L. Chiral hierarchical structure of bone minerals. Nano Res. 2022, 15, 1295–1302.

    Article  Google Scholar 

  45. McNally, E. A.; Schwarcz, H. P.; Botton, G. A.; Arsenault, A. L. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One 2012, 7, e29258.

    Article  CAS  Google Scholar 

  46. Gao, H. J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fracture 2006, 138, 101.

    Article  Google Scholar 

  47. Stock, S. R. The mineral-collagen interface in bone. Calcif. Tissue Int. 2015, 97, 262–280.

    Article  CAS  Google Scholar 

  48. Fratzl, P.; Kolednik, O.; Fischer, F. D.; Dean, M. N. The mechanics of tessellations-bioinspired strategies for fracture resistance. Chem. Soc. Rev. 2016, 45, 252–267.

    Article  CAS  Google Scholar 

  49. Weiner, S.; Price, P. A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986, 39, 365–375.

    Article  CAS  Google Scholar 

  50. Qin, Z.; Gautieri, A.; Nair, A. K.; Inbar, H.; Buehler, M. J. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir 2012, 28, 1982–1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 31500762 and 51672088), National Key R&D Program of China (Nos. 2016YFC1100600 and 2018YFC1106300), the Natural Science Foundation of Guangdong Province, China (No. 2014A030310215), Science and Technology Planning Project of Guangdong Province, China (Nos. 2019B020230003, 2016A010103009, and 2014B010133001), Guangdong Peak Project, China (No. DFJH201802), Science and Technology Program of Guangzhou, China (No. 201510010262), and the Fundamental Research Funds for the Central Universities (No. 2015ZM097) and the Excellent Young Talents Plan of Guizhou Medical University (No. 2021-101). We thank LetPub (https://www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuquan Hu, Xiaofeng Chen or Fei Hang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T., Teng, L., Zhou, Y. et al. Nanostructural origins of irreversible deformation in bone revealed by an in situ atomic force microscopy study. Nano Res. 15, 7329–7341 (2022). https://doi.org/10.1007/s12274-022-4365-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4365-8

Keywords

Navigation