Abstract
The structural origins of bone toughness at the nanoscale are not completely understood. Therefore, we performed in situ scanning using atomic force microscopy during macroscopic mechanical testing of antler and bovine bone, to reveal the origins of the irreversible plastic deformation at the mineralized collagen fibril (MCF) array and MCF levels. We found that the plastic deformation behavior at the nanoscale level could be divided into two stages. The first stage of plastic deformation at the nanoscale level was characterized by slippage between the MCF arrays, which contained mineral aggregate grains with regular shapes under load. In the second stage of nanoscale plastic deformation, the MCFs broke through the bonds of the extrafibrillar mineral aggregate grains and exhibited interfibrillar slippage. These nanoscale plastic deformation behaviors may thus be the origins of stress whitening and irreversible plastic deformation. Thus, the findings in this study not only shed light on the plastic deformation mechanisms of MCF arrays and MCFs, but also provide structural and mechanistic insights into bioinspired materials design and mechanisms of relevant bone diseases.
Similar content being viewed by others
References
Ritchie, R. O.; Buehler, M. J.; Hansma, P. Plasticity and toughness in bone. Phys. Today 2009, 62, 41–47.
Morsali, R.; Dai, Z. W.; Wang, Y.; Qian, D.; Minary-Jolandan, M. Deformation mechanisms of “two-part” natural adhesive in bone interfibrillar nano-interfaces. ACS Biomater. Sci. Eng. 2019, 5, 5916–5924.
Nyman, J. S.; Roy, A.; Reyes, M. J.; Wang, X. D. Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups. J. Biomed. Mater. Res. Part A 2009, 89A, 521–529.
Nyman, J. S.; Leng, H. J.; Dong, X. N.; Wang, X. D. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. J. Mech. Behav. Biomed. Mater. 2009, 2, 613–619.
Wang, X. D.; Nyman, J. S. A novel approach to assess post-yield energy dissipation of bone in tension. J. Biomech. 2007, 40, 674–677.
Nyman, J. S.; Roy, A.; Tyler, J. H.; Acuna, R. L.; Gayle, H. J.; Wang, X. D. Age-related factors affecting the postyield energy dissipation of human cortical bone. J. Orthop. Res. 2007, 25, 646–655.
De Falco, P.; Barbieri, E.; Pugno, N.; Gupta, H. S. Staggered fibrils and damageable interfaces lead concurrently and independently to hysteretic energy absorption and inhomogeneous strain fields in cyclically loaded antler bone. ACS Biomater. Sci. Eng. 2017, 3, 2779–2787.
Nalla, R. K.; Kinney, J. H.; Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2003, 2, 164–168.
Vashishth, D.; Behiri, J. C.; Bonfield, W. Crack growth resistance in cortical bone: Concept of microcrack toughening. J. Biomech. 1997, 30, 763–769.
Vashishth, D.; Tanner, K. E.; Bonfield, W. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J. Biomech. 2003, 36, 121–124.
Gupta, H. S.; Krauss, S.; Kerschnitzki, M.; Karunaratne, A.; Dunlop, J. W. C.; Barber, A. H.; Boesecke, P.; Funari, S. S.; Fratzl, P. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J. Mech. Behav. Biomed. Mater. 2013, 28, 366–382.
Krauss, S.; Fratzl, P.; Seto, J.; Currey, J. D.; Estevez, J. A.; Funari, S. S.; Gupta, H. S. Inhomogeneous fibril stretching in antler starts after macroscopic yielding: Indication for a nanoscale toughening mechanism. Bone 2009, 44, 1105–1110.
Weiner, S.; Wagner, H. D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298.
Tai, K.; Ulm, F. J.; Ortiz, C. Nanogranular origins of the strength of bone. Nano Lett. 2006, 6, 2520–2525.
Hang, F.; Barber, A. H. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J. Roy. Soc. Interface 2010, 8, 500–505.
Buehler, M. J. Molecular nanomechanics of nascent bone: Fibrillar toughening by mineralization. Nanotechnology 2000, 18, 295102.
Gupta, H. S.; Wagermaier, W.; Zickler, G. A.; Aroush, D. R. B.; Funari, S. S.; Roschger, P.; Wagner, H. D.; Fratzl, P. Nanoscale deformation mechanisms in bone. Nano Lett. 2005, 5, 2108–2111.
Gupta, H. S.; Seto, J.; Wagermaier, W.; Zaslansky, P.; Boesecke, P.; Fratzl, P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. USA 2006, 103, 17741–17746.
Lin, L. Q.; Samuel, J.; Zeng, X. W.; Wang, X. D. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J. Mech. Behav. Biomed. Mater. 2017, 65, 224–235.
Groetsch, A.; Gourrier, A.; Schwiedrzik, J.; Sztucki, M.; Beck, R. J.; Shephard, J. D.; Michler, J.; Zysset, P. K.; Wolfram, U. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale. Acta Biomater. 2019, 89, 313–329.
Katsamenis, O. L.; Chong, H. M. H.; Andriotis, O. G.; Thurner, P. J. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. J. Mech. Behav. Biomed. Mater. 2013, 17, 152–165.
Maghsoudi-Ganjeh, M.; Samuel, J.; Ahsan, A. S.; Wang, X. D.; Zeng, X. W. Intrafibrillar mineralization deficiency and osteogenesis imperfecta mouse bone fragility. J. Mech. Behav. Biomed. Mater. 2021, 117, 104377.
Wang, Y. H.; Ural, A. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior. J. Biomech. 2018, 66, 70–77.
Wang, Y. H.; Ural, A. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone. J. Mech. Behav. Biomed. Mater. 2018, 82, 18–26.
Wang, Y. H.; Ural, A. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae. J. Biomech. 2020, 112, 110041.
Wang, Y.; Ural, A. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. J. Mech. Behav. Biomed. Mater. 2019, 100, 103361.
Fang, M.; Goldstein, E. L.; Turner, A. S.; Les, C. M.; Orr, B. G.; Fisher, G. J.; Welch, K. B.; Rothman, E. D.; Holl, M. M. B. Type I collagen D-spacing in fibril bundles of dermis, tendon, and bone: Bridging between nano- and micro-level tissue hierarchy. ACS Nano 2012, 6, 9503–9514.
Zhao, H. X.; Jin, H.; Cai, J. Y.; Ding, S. The process of collagen biomineralization observed by AFM in a model dual membrane diffusion system. Ultramicroscopy 2010, 110, 1306–1311.
Balooch, M.; Habelitz, S.; Kinney, J. H.; Marshall, S. J.; Marshall, G. W. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 2008, 162, 404–410.
Xu, Z. H.; Li, X. D. Deformation strengthening of biopolymer in nacre. Adv. Funct. Mater. 2011, 21, 3883–3888.
Grégoire, D.; Loh, O.; Juster, A.; Espinosa, H. D. In-situ AFM experiments with discontinuous DIC applied to damage identification in biomaterials. Exp. Mech. 2011, 51, 591–607.
Seshadri, I. P.; Bhushan, B. In situ tensile deformation characterization of human hair with atomic force microscopy. Acta Mater. 2008, 56, 774–781.
Lin, Z. X.; Xu, Z. H.; An, Y. H.; Li, X. D. In situ observation of fracture behavior of canine cortical bone under bending. Mater. Sci. Eng.:C 2016, 62, 361–367.
Qian, T. B.; Chen, X. X.; Hang, F.; Zhuang, J.; Chen, X. F. Ordered fibril arrays in osteons promote the multidirectional nanodeflection of cracks: In situ AFM imaging. ACS Biomater. Sci. Eng. 2021, 7, 2372–2382.
Chen, X. X.; Qian, T. B.; Hang, F.; Chen, X. F. Water promotes the formation of fibril bridging in antler bone illuminated by in situ AFM testing. J. Mech. Behav. Biomed. Mater. 2021, 120, 104580.
Qian, T. B.; Chen, X. X.; Hang, F. Investigation of nanoscale failure behaviour of cortical bone under stress by AFM. J. Mech. Behav. Biomed. Mater. 2020, 112, 103989.
Shen, L.; Liu, T. X.; Lv, P. F. Polishing effect on nanoindentation behavior of nylon 66 and its nanocomposites. Polym. Test. 2005, 24, 746–749.
Zioupos, P.; Wang, X. T.; Currey, J. D. Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech. 1996, 29, 989–1002.
Currey, J. D.; Landete-Castillejos, T.; Estevez, J.; Ceacero, F.; Olguin, A.; Garcia, A.; Gallego, L. The mechanical properties of red deer antler bone when used in fighting. J. Exp. Biol. 2009, 212, 3985–3993.
Hardisty, M. R.; Garcia, T. C.; Choy, S.; Dahmubed, J.; Stover, S. M.; Fyhrie, D. P. Stress-whitening occurs in demineralized bone. Bone 2013, 57, 367–374.
Currey, J. D. Bones: Structure and Mechanics; Princeton University Press: Princeton, 2002.
Sun, X. B.; Hoon Jeon, J.; Blendell, J.; Akkus, O. Visualization of a phantom post-yield deformation process in cortical bone. J. Biomech. 2010, 43, 1989–1996.
Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.
Zhou, C.; Zhang, X. L.; Ai, J.; Ji, T.; Nagai, M.; Duan, Y. Y.; Che, S. A.; Han, L. Chiral hierarchical structure of bone minerals. Nano Res. 2022, 15, 1295–1302.
McNally, E. A.; Schwarcz, H. P.; Botton, G. A.; Arsenault, A. L. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One 2012, 7, e29258.
Gao, H. J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fracture 2006, 138, 101.
Stock, S. R. The mineral-collagen interface in bone. Calcif. Tissue Int. 2015, 97, 262–280.
Fratzl, P.; Kolednik, O.; Fischer, F. D.; Dean, M. N. The mechanics of tessellations-bioinspired strategies for fracture resistance. Chem. Soc. Rev. 2016, 45, 252–267.
Weiner, S.; Price, P. A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986, 39, 365–375.
Qin, Z.; Gautieri, A.; Nair, A. K.; Inbar, H.; Buehler, M. J. Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface. Langmuir 2012, 28, 1982–1992.
Acknowledgment
This work was supported by the National Natural Science Foundation of China (Nos. 31500762 and 51672088), National Key R&D Program of China (Nos. 2016YFC1100600 and 2018YFC1106300), the Natural Science Foundation of Guangdong Province, China (No. 2014A030310215), Science and Technology Planning Project of Guangdong Province, China (Nos. 2019B020230003, 2016A010103009, and 2014B010133001), Guangdong Peak Project, China (No. DFJH201802), Science and Technology Program of Guangzhou, China (No. 201510010262), and the Fundamental Research Funds for the Central Universities (No. 2015ZM097) and the Excellent Young Talents Plan of Guizhou Medical University (No. 2021-101). We thank LetPub (https://www.letpub.com) for its linguistic assistance during the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding authors
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Qian, T., Teng, L., Zhou, Y. et al. Nanostructural origins of irreversible deformation in bone revealed by an in situ atomic force microscopy study. Nano Res. 15, 7329–7341 (2022). https://doi.org/10.1007/s12274-022-4365-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12274-022-4365-8