Skip to main content
Log in

Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to the relatively short hole diffusion length, severe charge recombination in the bulk of bismuth vanadate (BiVO4) is the key issue for photoelectrochemical water splitting. Herein, we design a nanoporous MoO3−x/BiVO4 heterojunction photoanode to promote charge separation. The efficient electron transport properties of oxygen deficient MoO3−x and the nanoporous structure are beneficial for charge separation, leading to a significantly enhanced PEC performance. The optimized MoO3−x/BiVO4 heterojunction photoanode exhibits a photocurrent density of 5.07 mA·cm−2 for Na2SO3 oxidation. By depositing FeOOH/NiOOH dual oxygen evolution cocatalysts to promote surface kinetics, a high photocurrent density of 4.81 mA·cm−2 can be achieved for PEC water splitting, exhibiting an excellent applied bias photon-to-current efficiency of 1.57%. Moreover, stable overall water splitting is achieved under consecutive light illumination for 10 h. We provide a proof of concept for the design of efficient BiVO4-based heterojunction photoanodes for stable PEC water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. H.; Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938.

    Google Scholar 

  2. Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

    CAS  Google Scholar 

  3. Wang, L.; Zhang, T.; Su, J. Z.; Guo, L. J. Room-temperature photodeposition of conformal transition metal based cocatalysts on BiVO4 for enhanced photoelectrochemical water splitting. Nano Res. 2020, 13, 231–237.

    CAS  Google Scholar 

  4. Kang, Y. Y.; Chen, R.; Zhen, C.; Wang, L. Z.; Liu, G.; Cheng, H. M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163–1169.

    CAS  Google Scholar 

  5. Wang, S. C.; Wang, L. Z.; Huang, W. Bismuth-based photocatalysts for solar energy conversion. J. Mater. Chem. A 2020, 8, 24307–24352.

    CAS  Google Scholar 

  6. Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B., Van De Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752–2757.

    CAS  Google Scholar 

  7. McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553–8557.

    CAS  Google Scholar 

  8. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

    CAS  Google Scholar 

  9. Kuang, Y. B.; Jia, Q. X.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K. A front-illuminated nanostructured transparent BiVO4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 2016, 6, 1501645.

    Google Scholar 

  10. Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2017, 56, 8500–8504.

    CAS  Google Scholar 

  11. Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production. Adv. Energy Mater. 2016, 6, 1501754.

    Google Scholar 

  12. Han, H. S.; Shin, S.; Kim, D. H.; Park, I. J.; Kim, J. S.; Huang, P. S.; Lee, J. K.; Cho, I. S.; Zheng, X. L. Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 2018, 11, 1299–1306.

    CAS  Google Scholar 

  13. Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192–5247.

    CAS  Google Scholar 

  14. Wang, S. C.; Wang, X.; Liu, B. Y.; Guo, Z. C.; Ostrikov, K. K.; Wang, L. Z.; Huang, W. Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting. Nanoscale 2021, 13, 17989–18009.

    CAS  Google Scholar 

  15. Gao, R. T.; Wang, L. Stable Cocatalyst-Free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew. Chem., Int. Ed. 2020, 59, 23094–23099.

    CAS  Google Scholar 

  16. Feng, S. J.; Wang, T.; Liu, B.; Hu, C. L.; Li, L. L.; Zhao, Z. J.; Gong, J. L. Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew. Chem., Int. Ed. 2020, 59, 2044–2048.

    CAS  Google Scholar 

  17. Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B. Van De Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

    Google Scholar 

  18. Shi, Y. M.; Yu, Y. F.; Yu, Y.; Huang, Y.; Zhao, B. H.; Zhang, B. Boosting photoelectrochemical water oxidation activity and stability of Mo-doped BiVO4 through the uniform assembly coating of NiFe-phenolic networks. ACS Energy Lett. 2018, 3, 1648–1654.

    CAS  Google Scholar 

  19. Kuang, Y. B.; Jia, Q. X.; Ma, G. J.; Hisatomi, T.; Minegishi, T.; Nishiyama, H.; Nakabayashi, M.; Shibata, N.; Yamada, T.; Kudo, A. et al. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nat. Energy 2016, 2, 16191.

    Google Scholar 

  20. Jin, B. J.; Cho, Y.; Park, C.; Jeong, J.; Kim, S.; Jin, J.; Kim, W.; Wang, L. Y.; Lu, S. Y.; Zhang, S. L. et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 2022, 15, 672–679.

    CAS  Google Scholar 

  21. Ye, S.; Shi, W. W.; Liu, Y.; Li, D. F.; Yin, H.; Chi, H. B.; Luo, Y. L.; Ta, N.; Fan, F. T.; Wang, X. L. et al. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% Solar-to-Hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499–12508.

    CAS  Google Scholar 

  22. Zhang, K.; Jin, B. J.; Park, C.; Cho, Y.; Song, X. F.; Shi, X. J.; Zhang, S. L.; Kim, W.; Zeng, H. B.; Park, J. H. Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 2019, 10, 2001.

    Google Scholar 

  23. Ye, K. H.; Li, H. B.; Huang, D.; Xiao, S.; Qiu, W. T.; Li, M. Y.; Hu, Y. W.; Mai, W.; Ji, H. B.; Yang, S. H. Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nat. Commun. 2019, 10, 3687.

    Google Scholar 

  24. Zhou, Y. G.; Zhang, L. Y.; Lin, L. H.; Wygant, B. R.; Liu, Y.; Zhu, Y.; Zheng, Y. B.; Mullins, C. B.; Zhao, Y.; Zhang, X. H. et al. Highly efficient photoelectrochemical water splitting from hierarchical WO3/BiVO4 nanoporous sphere arrays. Nano Lett. 2017, 17, 8012–8017.

    CAS  Google Scholar 

  25. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

    CAS  Google Scholar 

  26. Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D. et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci. Rep. 2015, 5, 11141.

    Google Scholar 

  27. Guo, H.; Guo, P. F.; Yang, X. K.; Zhang, J.; Yu, H. W.; Zhao, W. H.; Ye, Q.; Wang, H. Y.; Wang, H. Q. Embedding of WO3 nanocrystals with rich oxygen-vacancies in solution processed perovskite film for improved photovoltaic performance. J. Power Sources 2020, 461, 228175.

    CAS  Google Scholar 

  28. Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Met. 2020, 39, 841–849.

    CAS  Google Scholar 

  29. Rao, P. M.; Cai, L. L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P. D.; Zheng, X. L. Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett. 2014, 14, 1099–1105.

    CAS  Google Scholar 

  30. Hanson, E. D.; Lajaunie, L.; Hao, S. Q.; Myers, B. D.; Shi, F. Y.; Murthy, A. A.; Wolverton, C.; Arenal, R.; Dravid, V. P. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3−x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380.

    Google Scholar 

  31. Balendhran, S.; Deng, J. K.; Ou, J. Z.; Walia, S.; Scott, J.; Tang, J. S.; Wang, K. L.; Field, M. R.; Russo, S.; Zhuiykov, S. et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 2013, 25, 109–114.

    CAS  Google Scholar 

  32. Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X. T.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337–1342.

    CAS  Google Scholar 

  33. He, H. C.; Zhou, Y.; Ke, G. L.; Zhong, X. H.; Yang, M. J.; Bian, L.; Lv, K. L.; Dong, F. Q. Improved surface charge transfer in MoO3/BiVO4 heterojunction film for photoelectrochemical water oxidation. Electrochim. Acta 2017, 257, 181–191.

    CAS  Google Scholar 

  34. Chen, Y. Q.; Yang, M. J.; Du, J. Y.; Ke, G. L.; Zhong, X. H.; Zhou, Y.; Dong, F. Q.; Bian, L.; He, H. C. MoO3/BiVO4 heterojunction film with oxygen vacancies for efficient and stable photoelectrochemical water oxidation. J. Mater. Sci. 2019, 54, 671–682.

    Google Scholar 

  35. Xiao, X.; Zhang, W. D. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J. Mater. Chem. 2000, 20, 5866–5870.

    Google Scholar 

  36. Xu, C.; Zou, D. B.; Wang, L. H.; Luo, H.; Ying, T. K. γ-Bi2MoO6 nanoplates: Surfactant-assisted hydrothermal synthesis and optical properties. Ceram. Int. 2009, 35, 2099–2102.

    CAS  Google Scholar 

  37. Chandar, N. R.; Agilan, S.; Thangarasu, R.; Muthukumarasamy, N.; Ganesh, R. Influence of the annealing temperature on the formation of Mo17O47 and MoO3 nanoparticles and their Photocatalytic performances for the degradation of MB dye. J. Mater. Sci. Mater. Electron. 2020, 31, 7378–7388.

    Google Scholar 

  38. Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

    Google Scholar 

  39. Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

    CAS  Google Scholar 

  40. Kim, M.; Lee, B.; Ju, H.; Kim, J. Y.; Kim, J.; Lee, S. W. Oxygen-vacancy-introduced BaSnO3−δ photoanodes with tunable band structures for efficient solar-driven water splitting. Adv. Mater. 2019, 31, 1903316.

    Google Scholar 

  41. Ning, F. Y.; Shao, M. F.; Xu, S. M.; Fu, Y.; Zhang, R. K.; Wei, M.; Evans, D. G.; Duan, X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 2016, 9, 2633–2643.

    CAS  Google Scholar 

  42. Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167–175.

    CAS  Google Scholar 

  43. Jin, S.; Ma, X. X.; Pan, J.; Zhu, C. Y.; Saji, S. E.; Hu, J. G.; Xu, X. Y.; Sun, L. T.; Yin, Z. Y. Oxygen vacancies activating surface reactivity to favor charge separation and transfer in nanoporous BiVO4 photoanodes. Appl. Catal. B Environ. 2020, 281, 119477.

    Google Scholar 

  44. Zhong, W.; Deng, S. B.; Wang, K.; Li, G. J.; Li, G. Y.; Chen, R. S.; Kwok, H. S. Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. Nanomaterials (Basel) 2008, 8, 590.

    Google Scholar 

  45. Wang, S. C.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Z. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.

    Google Scholar 

  46. Wang, S. C.; Chen, H. J.; Gao, G. P.; Butburee, T.; Lyu, M.; Thaweesak, S.; Yun, J. H.; Du, A. J.; Liu, G.; Wang, L. Z. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy 2016, 24, 94–102.

    CAS  Google Scholar 

  47. Ruan, Q. S.; Miao, T. N.; Wang, H.; Tang, J. W. Insight on shallow trap states-introduced photocathodic performance in n-type polymer photocatalysts. J. Am. Chem. Soc. 2020, 142, 2795–2802.

    CAS  Google Scholar 

  48. Huang, H. W.; Cao, R. R.; Yu, S. X.; Xu, K.; Hao, W. C.; Wang, Y. G.; Dong, F.; Zhang, T. R.; Zhang, Y. H. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. Appl. Catal. B Environ. 2017, 219, 526–537.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 52002328), the Fundamental Research Funds for the Central Universities, the Joint Research Funds of Department of Science & Technology of Shaanxi Province, and Northwestern Polytechnical University (No. 2020GXLH-Z-018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songcan Wang or Wei Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, B., Wang, X. et al. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 15, 7026–7033 (2022). https://doi.org/10.1007/s12274-022-4344-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4344-0

Keywords

Navigation