Skip to main content
Log in

3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Human-machine interfaces (HMIs) are important windows for a human to communicate with the outside world. The current HMI devices such as cellphones, tablets, and computers can be used to help people with aphasia for language expression. However, these conventional HMI devices are not friendly to some particular groups who also lose their abilities of physical movements like in the intensive care unit (ICU) or vegetative patients to realize language expression. Herein, we report a breath-driven triboelectric nanogenerator (TENG) acting as a HMI sensor for language expression through human breathing without voice controls or manual operations. The TENG is integrated within a mask and fabricated via a three-dimensional (3D) printing method. When wearing the mask, the TENG can produce responsive electric signals corresponding to the airflow from breathing, which is capable of recognizing human breathing types with different intensities, lengths, and frequencies. On the basis of the breathing recognition ability, a breathing-based language expressing system is further developed through introducing the Morse code as a communication protocol. Compared with conventional language expressing devices, this system can extract subjective information of a person from breathing behaviors and output corresponding language text, which is not relying on voices or physical movements. This research for the first time introduces the self-powered breathing-based language expressing method to the field of HMI technology by using a 3D printed TENG, and could make HMI interactions become more friendly and fascinating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hublin, J. J.; Ben-Ncer, A.; Bailey, S. E.; Freidline, S. E.; Neubauer, S.; Skinner, M. M.; Bergmann, I.; Le Cabec, A.; Benazzi, S.; Harvati, K. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017, 546, 289–292.

    Article  CAS  Google Scholar 

  2. Scott, S. K. From speech and talkers to the social world: The neural processing of human spoken language. Science 2019, 366, 58–62.

    Article  CAS  Google Scholar 

  3. Halai, A. D.; Woollams, A. M.; Lambon Ralph, M. A. Investigating the effect of changing parameters when building prediction models for post-stroke aphasia. Nat. Hum. Behav. 2020, 4, 725–735.

    Article  Google Scholar 

  4. Luo, Y. Y.; Li, Y. Z.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B. C.; Palacios, T.; Torralba, A.; Matusik, W. Learning human-environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201.

    Article  Google Scholar 

  5. Lim, C.; Hong, Y. J.; Jung, J.; Shin, Y.; Sunwoo, S. H.; Baik, S.; Park, O. K.; Choi, S. H.; Hyeon, T.; Kim, J. H. et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716.

    Article  CAS  Google Scholar 

  6. Lu, L. J.; Jiang, C. P.; Hu, G. S.; Liu, J. Q.; Yang, B. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021, 33, 2100218.

    Article  CAS  Google Scholar 

  7. Li, Q. S.; Chen, G.; Cui, Y. J.; Ji, S. B.; Liu, Z. Y.; Wan, C. J.; Liu, Y. P.; Lu, Y. H.; Wang, C. X.; Zhang, N. et al. Highly thermal-wet comfortable and conformal silk-based electrodes for on-skin sensors with sweat tolerance. ACS Nano 2021, 15, 9955–9966.

    Article  CAS  Google Scholar 

  8. Wang, H. S.; Hong, S. K.; Han, J. H.; Jung, Y. H.; Jeong, H. K.; Im, T. H.; Jeong, C. K.; Lee, B. Y.; Kim, G.; Yoo, C. D. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683.

    Article  CAS  Google Scholar 

  9. Zhu, J. X.; Ren, Z. H.; Lee, C. Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification. ACS Nano 2021, 15, 894–903.

    Article  CAS  Google Scholar 

  10. Xiang, S. X.; Liu, D. J.; Jiang, C. C.; Zhou, W. M.; Ling, D.; Zheng, W. T.; Sun, X. P.; Li, X.; Mao, Y. C.; Shan, C. X. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv. Funct. Mater. 2021, 31, 2100940.

    Article  CAS  Google Scholar 

  11. Tang, Y. J.; Zhou, H.; Sun, X. P.; Diao, N. H.; Wang, J. B.; Zhang, B. S.; Qin, C.; Liang, E. J.; Mao, Y. C. Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 2020, 30, 1907893.

    Article  CAS  Google Scholar 

  12. Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

    Article  CAS  Google Scholar 

  13. Chen, C.; Wen, Z.; Shi, J. H.; Jian, X. H.; Li, P. Y.; Yeow, J. T. W.; Sun, X. H. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143.

    Article  CAS  Google Scholar 

  14. Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

    Article  CAS  Google Scholar 

  15. Lei, H.; Xiao, J.; Chen, Y. F.; Jiang, J. W.; Xu, R. J.; Wen, Z.; Dong, B.; Sun, X. H. Bamboo-inspired self-powered triboelectric sensor for touch sensing and sitting posture monitoring. Nano Energy 2022, 91, 106670.

    Article  CAS  Google Scholar 

  16. Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

    Article  Google Scholar 

  17. Wang, M.; Zhang, N.; Tang, Y. J.; Zhang, H.; Ning, C.; Tian, L.; Li, W. H.; Zhang, J. H.; Mao, Y. C.; Liang, E. J. Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J. Mater. Chem. A 2017, 5, 12252–12257.

    Article  CAS  Google Scholar 

  18. Mao, Y. C.; Zhang, N.; Tang, Y. J.; Wang, M.; Chao, M. J.; Liang, E. J. A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 2017, 9, 14499–14505.

    Article  CAS  Google Scholar 

  19. Ning, C.; Tian, L.; Zhao, X. Y.; Xiang, S. X; Tang, Y. J.; Liang, E. J.; Mao, Y. C. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J. Mater. Chem. A 2018, 6, 19143–19150.

    Article  CAS  Google Scholar 

  20. Lei, H.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

    Article  CAS  Google Scholar 

  21. Chen, X. P.; Xie, X. K.; Liu, Y. N.; Zhao, C.; Wen, M.; Wen, Z. Advances in healthcare electronics enabled by triboelectric nanogenerators. Adv. Funct. Mater. 2020, 30, 2004673.

    Article  CAS  Google Scholar 

  22. Wang, S.; Tai, H. L.; Liu, B. H.; Duan, Z. H.; Yuan, Z.; Pan, H.; Su, Y. J.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. A facile respiration-driven triboelectric nanogenerator for multifunctional respiratory monitoring. Nano Energy 2019, 58, 312–321.

    Article  CAS  Google Scholar 

  23. Rajabi-Abhari, A.; Kim, J. N.; Lee, J.; Tabassian, R.; Mahato, M.; Youn, H. J.; Lee, H.; Oh, I. K. Diatom bio-silica and cellulose nanofibril for bio-triboelectric nanogenerators and self-powered breath monitoring masks. ACS Appl. Mater. Interfaces 2021, 13, 219–232.

    Article  CAS  Google Scholar 

  24. He, X.; Zou, H. Y.; Geng, Z. S.; Wang, X. F.; Ding, W. D.; Hu, F.; Zi, Y. L.; Xu, C.; Zhang, S. L.; Yu, H. et al. A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 2018, 28, 1805540.

    Article  Google Scholar 

  25. Li, H.; Sun, Y. N.; Su, Y. J.; Li, R. H.; Jiang, H. W.; Xie, Y. X.; Ding, X. R.; Wu, X. Y.; Tang, Y. Multi-scale metal mesh based triboelectric nanogenerator for mechanical energy harvesting and respiratory monitoring. Nano Energy 2021, 89, 106423.

    Article  CAS  Google Scholar 

  26. Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.

    Article  CAS  Google Scholar 

  27. Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

    Article  CAS  Google Scholar 

  28. Lu, Q.; Chen, H.; Zeng, Y.; Xue, J.; Cao, X.; Wang, N.; Wang, Z. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy 2022, 91, 106612.

    Article  CAS  Google Scholar 

  29. Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

    Article  CAS  Google Scholar 

  30. Chen, X. P.; Luo, F.; Yuan, M.; Xie, D. L.; Shen, L.; Zheng, K.; Wang, Z. P.; Li, X. D.; Tao, L. Q. A dual-functional graphene-based self-alarm health-monitoring e-skin. Adv. Funct. Mater. 2019, 29, 1904706.

    Article  CAS  Google Scholar 

  31. Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 2018, 12, 6156–6162.

    Article  CAS  Google Scholar 

  32. Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.

    Article  CAS  Google Scholar 

  33. Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human-machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.

    Article  CAS  Google Scholar 

  34. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  Google Scholar 

  35. Kwak, S. S.; Yoon, H. J.; Kim, S. W. Textile-based triboelectric nanogenerators for self-powered wearable electronics. Adv. Funct. Mater. 2019, 29, 1804533.

    Article  Google Scholar 

  36. Nishi, M. Breathing of humans and its simulation. Master thesis. Friedlich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany, 2004.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62074137) and the Key Research, Development, and Promotion Program of Henan Province (No. 202102210004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchao Mao.

Electronic Supplementary Material

12274_2022_4339_MOESM1_ESM.pdf

3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression

Supplementary material, approximately 1.62 MB.

Supplementary material, approximately 11.4 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Zhang, B., Wang, H. et al. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 15, 7460–7467 (2022). https://doi.org/10.1007/s12274-022-4339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4339-x

Keywords

Navigation