Skip to main content
Log in

Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers. Herein, a novel CoWO4/g-C3N4 (CWO/CN) p—n junction was synthesized using an electrostatic self-assembly method. The constructed 2D/2D p—n heterostructure had a rich hetero-interface, increased charge density, and fast separation efficiency of photoinduced carriers. The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism. Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field, ensuring an efficient separation and transfer process of photoinduced carriers. Under the optimized conditions, the CWO/CN heterojunction displayed enhanced photocatalytic H2 generation activity under full spectrum and visible lights irradiation, respectively. Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p—n type semiconductor for photocatalytic H2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

    CAS  Google Scholar 

  2. Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

    CAS  Google Scholar 

  3. Wang, L. X.; Zhang, J. J.; Zhang, Y.; Yu, H. G.; Qu, Y. H.; Yu, J. G. Inorganic metal-oxide photocatalyst for H2O2 production. Small 2021, 18, 2104561.

    Google Scholar 

  4. Jian, S. J.; Tian, Z. W.; Hu, J. P.; Zhang, K. Y.; Zhang, L.; Duan, G. G.; Yang, W. S.; Jiang, S. H. Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Adv. Powder Mater. 2022, 1, 100004.

    Google Scholar 

  5. Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

    CAS  Google Scholar 

  6. Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021, 40, 2381–2391.

    CAS  Google Scholar 

  7. Liu, Y. J.; Zhu, Q. H.; Tayyab, M.; Zhou, L.; Lei, J. Y.; Zhang, J. L. Single-atom Pt loaded Zinc vacancies ZnO-ZnS induced type-V electron transport for efficiency photocatalytic H2 evolution. Solar RRL 2021, 5, 2100536.

    CAS  Google Scholar 

  8. Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

    CAS  Google Scholar 

  9. Aggarwal, M.; Basu, S.; Shetti, N. P.; Nadagouda, M. N.; Kwon, E. E.; Park, Y. K.; Aminabhavi, T. M. Photocatalytic carbon dioxide reduction: Exploring the role of ultrathin 2D graphitic carbon nitride (g-C3N4). Chem. Eng. J. 2021, 425, 131402.

    CAS  Google Scholar 

  10. Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

    CAS  Google Scholar 

  11. Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

    CAS  Google Scholar 

  12. Liu, J.; Guo, S.; Wu, H. Z.; Zhang, X. L.; Li, J.; Zhou, K. Synergetic effects of Bi5+ and oxygen vacancies in Bismuth(V)-rich Bi4O7 nanosheets for enhanced near-infrared light driven photocatalysis. J. Mater. Sci. Technol. 2021, 85, 1–10.

    CAS  Google Scholar 

  13. Wang, H.; Jiang, S. L.; Shao, W.; Zhang, X. D.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Luo, Y.; Xie, Y. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474–3480.

    CAS  Google Scholar 

  14. Xiao, X. D.; Lin, S. Y.; Zhang, L. P.; Meng, H. Y.; Zhou, J.; Li, Q.; Liu, J. N.; Qiao, P. Z.; Jiang, B. J. Constructing Pd-N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Res. 2022, 15, 2928–2934.

    CAS  Google Scholar 

  15. Xiao, M.; Jiao, Y. L.; Luo, B.; Wang, S. C.; Chen, P.; Lyu, M. Q.; Du, A. J.; Wang, L. Z. Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3897-7.

  16. Wang, K.; Jiang, L. S.; Wu, X. Y.; Zhang, G. K. Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion. J. Mater. Chem. A 2020, 8, 13241–13247.

    CAS  Google Scholar 

  17. Ren, Y. Y.; Li, Y.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77.

    CAS  Google Scholar 

  18. Guo, S. Q.; Zhang, H. J.; Hu, Z. Z.; Zhen, M. M.; Yang, B.; Shen, B. X.; Dong, F. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021, 14, 4188–4196.

    CAS  Google Scholar 

  19. Che, H. N.; Liu, C. B.; Che, G. B.; Liao, G. F.; Dong, H. J.; Li, C. X.; Song, N.; Li, C. M. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.

    CAS  Google Scholar 

  20. Chai, B.; Yan, J. T.; Fan, G. Z.; Song, G. S.; Wang, C. L. In situ fabrication of CdMoO4/g-C3N4 composites with improved charge separation and photocatalytic activity under visible light irradiation. Chin. J. Catal. 2020, 41, 170–179.

    CAS  Google Scholar 

  21. Wu, X. Y.; Li, Y.; Zhang, G. K.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y. F.; Xie, Y. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: Insight into full spectrum-induced reaction Mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274.

    CAS  Google Scholar 

  22. Zeng, Y.; Luo, X.; Li, F.; Huang, A. H.; Wu, H. M.; Xu, G. Q.; Wang, S. L. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light. Environ. Sci. Technol. 2021, 55, 7711–7720.

    CAS  Google Scholar 

  23. Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interface Sci. 2020, 569, 34–49.

    CAS  Google Scholar 

  24. Zhang, H. Y.; Tian, W. J.; Li, Y. G.; Sun, H. Q.; Tadé, M. O.; Wang, S. B. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 2018, 6, 6265–6272.

    CAS  Google Scholar 

  25. Cui, H. J.; Li, B. B.; Zhang, Y. Z.; Zheng, X. D.; Li, X. Z.; Li, Z. Y.; Xu, S. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance. Int. J. Hydrogen Energy 2018, 43, 18242–18252.

    CAS  Google Scholar 

  26. Kresse, G., Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  27. Bryk, P.; Patrykiejew, A.; Pizio, O.; Sokolowski, S. The chemical potential of Lennard-Jones associating fluids from osmotic monte Carlo simulations. Mol. Phys. 1997, 92, 949–956.

    CAS  Google Scholar 

  28. VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

    CAS  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Google Scholar 

  30. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Google Scholar 

  31. Li, J.; Huang, B. J.; Guo, Q.; Guo, S.; Peng, Z. K.; Liu, J.; Tian, Q. Y.; Yang, Y. P.; Xu, Q.; Liu, Z. Y. et al. Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2021, 284, 119733.

    CAS  Google Scholar 

  32. Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

    CAS  Google Scholar 

  33. Xia, D. H.; Wang, W. J.; Yin, R.; Jiang, Z. F.; An, T. C.; Li, G. Y.; Zhao, H. J.; Wong, P. K. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species. Appl. Catal. B:Environ. 2017, 214, 23–33.

    CAS  Google Scholar 

  34. Deng, Y. C.; Liu, J.; Huang, Y. B.; Ma, M. M.; Liu, K.; Dou, X. M.; Wang, Z. J.; Qu, S. C.; Wang, Z. G. Engineering the photocatalytic behaviors of g/C3N4-based metal-free materials for degradation of a representative antibiotic. Adv. Funct. Mater. 2020, 30, 2002353.

    CAS  Google Scholar 

  35. Zhao, X.; Fan, Y. Y.; Zhang, W. S.; Zhang, X. J.; Han, D. X.; Niu, L.; Ivaska, A. Nanoengineering construction of Cu2O nanowire arrays encapsulated with g-C3N4 as 3D spatial reticulation all-solid-state direct Z-scheme photocatalysts for photocatalytic reduction of carbon dioxide. ACS Catal. 2020, 10, 6367–6376.

    CAS  Google Scholar 

  36. Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

    CAS  Google Scholar 

  37. Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

    CAS  Google Scholar 

  38. Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced Co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

    Google Scholar 

  39. Kong, L. Q.; Ji, Y. J.; Dang, Z. Z.; Yan, J. Q.; Li, P.; Li, Y. Y.; Liu, S. Z. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv. Funct. Mater. 2018, 28, 1800668.

    Google Scholar 

  40. Wang, D.; Qiao, S. S.; Guo, J.; Guo, Y.; Xu, Q.; Akram, N.; Wang, J. D. Efficient Co@Co3O4 core-shell catalysts for photocatalytic water oxidation and its behaviors in two different photocatalytic systems. J. Energy Chem. 2021, 57, 83–91.

    CAS  Google Scholar 

  41. Li, X. J.; Zhang, P. P.; Zhang, H. Y.; Tian, W. J.; Yang, Y. Y.; Hu, K. S.; Chen, D. C.; Li, Q.; Duan, X. G.; Sun, H. Q. et al. Van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3744-x.

  42. He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z. Y.; Zhang, J.; Yu, X. H.; Hu, Y. P.; Huang, W.; Li. Y. G. Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3882-1.

  43. Manickathai, K.; Viswanathan, S. K.; Alagar, M. Synthesis and characterization of CdO and CdS nanoparticles. Indian J. Pure Appl. Phys. 2008, 46, 561–564.

    CAS  Google Scholar 

  44. Matte, H. S. S. R.; Subrahmanyam, M. K. S.; Rao, K. V.; George, S. J.; Rao, C. N. R. Quenching of fluorescence of aromatic molecules by graphene due to electron transfer. Chem. Phys. Lett. 2011, 506, 260–264.

    CAS  Google Scholar 

  45. Li, J.; Wu, X. Y.; Pan, W. F.; Zhang, G. K.; Chen, H. Vacancy-rich monolayer BiO2−x as a highly efficient UV, visible, and near-infrared responsive photocatalyst. Angew. Chem., Int. Ed. 2018, 57, 491–495.

    Google Scholar 

  46. Li, J.; Pan, W. F.; Liu, Q. Y.; Chen, Z. Q.; Chen, Z. J.; Feng, X. Z.; Chen, H. Interfacial engineering of Bi19Br3S27 nanowires promotes metallic photocatalytic CO2 reduction activity under near-infrared light irradiation. J. Am. Chem. Soc. 2021, 143, 6551–6559.

    CAS  Google Scholar 

  47. Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.; Osmond, J.; De Abajo, F. J. G.; Koppens, F. H. L. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 2013, 13, 2030–2035.

    CAS  Google Scholar 

  48. Bandiello, E.; Rodríguez-Hernández, P.; Muñoz, A.; Buenestado, M. B.; Popescu, C.; Errandonea, D. Electronic properties and high-pressure behavior of wolframite-type CoWO4. Mater. Adv. 2021, 2, 5955–5966.

    CAS  Google Scholar 

  49. Li, J.; Zhao, W. H.; Wang, J.; Song, S. X.; Wu, X. Y.; Zhang, G. K. Noble metal-free modified ultrathin carbon nitride with promoted molecular oxygen activation for photocatalytic formaldehyde oxidization and DFT study. Appl. Surf. Sci. 2018, 458, 59–69.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Outstanding Talent Research Fund of Zhengzhou University, China Postdoctoral Science Foundation (Nos. 2020TQ0277 and 2020M682328), Central Plains Science and Technology Innovation Leader Project (No. 214200510006), and Postdoctoral Science Foundation of Henan province (No. 202002010). The DFT calculations are supported by Supercomputer Center in Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Guo or Jun Li.

Electronic Supplementary Material

12274_2022_4329_MOESM1_ESM.pdf

Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Niu, R., Liu, J. et al. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p—n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 15, 6987–6998 (2022). https://doi.org/10.1007/s12274-022-4329-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4329-z

Keywords

Navigation